Analyses of Monotone Gradient Methods

Yu-Hong Dai'? and Ya-xiang Yuan'
Dedicated to Professor Ji-ye Han on the occasion of his 70 birthday

Abstract. The gradient method is one simple method in nonlinear
optimization. In this paper, we give a brief review on monotone gra-
dient methods and study their numerical properties by introducing
a new technique of long-term observation. We find that, one mono-
tone gradient algorithm which is proposed by Yuan recently shares
with the Barzilai-Borwein (BB) method the property that the gra-
dient components with respect to the eigenvectors of the function
Hessian are decreasing together. This might partly explain why this
algorithm by Yuan is comparable to the BB method in practice.
Some examples are also provided showing that the alternate mini-
mization algorithm and the other algorithm by Yuan may fall into
cycles. Some more efficient gradient algorithms are provided. Par-
ticularly, one of them is monotone and performs better than the BB
method in the quadratic case.

Key words: gradient method, monotone, nonmonotone, strictly
convex quadratics, cycle.

AMS(MOS) subject classifications. 65k, 90c.

1. Introduction

To minimize a smooth function f, we are interested in the gradient method

Tyl = T — QLG (1.1)

where g, = g(zr) = V f(zk) is the gradient of f(x) at the current iteration zj and
oy is a stepsize. The steepest descent (SD) method, which can be dated back to
Cauchy [3], calculates the stepsize by an exact line search

ofP = argmin f (21 - agy). (1.2)

'State Key Laboratory of Scientific and Engineering Computing, Institute of Computa-
tional Mathematics and Scientific/Engineering computing, Academy of Mathematics and Sys-
tem Sciences, Chinese Academy of Sciences, P. O. Box 2719, Beijing 100080, China. Email:
{dyh,yyx}@Qlsec.cc.ac.cn

2Department of Mathematics, University of Bayreuth, D-95440, Germany.

It is well known that the SD method is very slow and produces the so-called zigzag-
ging phenomenon. Assume that the objective function

flz) = %xTAw — bz, (1.3)

where A € R™ "™ is symmetric and positive definite and b € R" is some vector.
Akaike [1] proved that the SD method is @Q-linearly convergent with the Q-linear
factor Z—H, where k is the condition number of the Hessian matrix A. Forsythe
[9] gives an interesting analysis to show that the gradients g(xj) will tend to zero
eventually along two directions alternatively.

Another ingenious way of choosing «y is provided by Barzilai and Borwein [2].
Their basic idea is to regard the matrix Dy = a—lkf as some approximation to the
Hessian V2 f(z;) and then impose some quasi-Newton property on Dj. Mathemat-
ically, defining sx_1 = x — zx—1 and yx_1 = gr — gx—1, they decide the stepsize for
k> 2 by

ap = argmin || Dgsk 1 — yk—1ll2, (1.4)
acR

which yields
BB _ Sh-15k-1
Sp_1Yk—1

Barzilai and Borwein proves that the method (1.1)-(1.5) is R-superlinearly conver-
gent for 2-dimensional convex quadratics. In practice, the choice (1.5) has been
shown to be much more efficient than (1.2) (for example, see Fletcher [8]). The
BB-like method has now received much attention in the optimization community
(see [6, 4] and the references therein).

Although the BB method greatly speeds up the convergence, it cannot guarantee
a descent on the objective function at every iteration. Therefore one interesting
question is, does there exist some stepsize formula which enables fast convergence
and possesses the monotone property? Presently, there have been several studies
on this topic. Specifically, Yuan [11] provides a very interesting formula for the
stepsize oy and proposes two algorithms, Algorithm 2.1(A) and Algorithm 2.1(B),
based on the new stepsize (see (2.10)). The numerical experiments in [11] show
that Algorithm 2.1(B) is comparable to the BB method for large scale problems
and better for small scale problems. In this paper, we will give a brief review on
monotone gradient methods (see §2) and provide some analyses for these methods
(see §3 and §4). These analyses explain why Algorithm 2.1(B) is better than other
existing monotone gradient methods and comparable to the BB method. Some new
efficient choices based on (2.10) or its variants are given in §5. Conclusion and
discussion are made in the last section. Particularly, one of them is monotone and
performs better than the BB method.

Throughout this paper, we assume that the objective function has the form (1.3).

2. A brief review on monotone gradient methods
If the method is such that f(xg) < f(zrs1) for all k > 1, then we call the method

is a monotone method. The SD method is clearly a monotone method due to the
choice (1.2). Under the assumption that f is given in (1.3), we have for any gradient
method (1.1) that

1
f(zri1) = k) — axgi g + 501%91{14%- (2.1)

By (1.2) and the above relation, we can obtain the analytical expression of the SD
stepsize
9r Agk

Further, by writing (2.1) as

1
f(rpg1) = flae) + 50%(0% —2a;.P)gi Agy,

we know that in the quadratic case a gradient method is monotone if and only if
0 < oy <2037, (2.3)

Assume that A\ and), are the minimal and maximal eigenvalues of the Hessian
matrix A, respectively. The following choice for the stepsize is studied in Elman and
Golub [7]

2
OPT1

-z 2.4
Y N (2:4)

This stepsize is such that the modulus || — «Al|s is minimized, that is

OPT1 :
o =arg min [[I—adls,

and hence gives the best convergence result while the analysis is via the relation

lgrrilla < IT — arAll2llgell2-

Since g} Agr < A1g} gk, the choice (2.4) clearly satisfies (2.3). However, since A\; and
Apn is normally unknown to users, the method (1.2)—(2.4) is not practical unless A\;
and A, are known or can be estimated beforehand. Dai and Yang [5] proposed the
following stepsize formula

oprz _ lI9kll2 (2.5)

: [Agell2”
It is obvious that aPT7? < aP. The choice (2.5) is shown to tend to aPFTt.
Meanwhile, the minimal eigenvalue A; and the maximal eigenvalue A, of A can be
estimated through the gradients generated. However, the numerical performance of
(2.5) is similar to those of (1.2) and (2.4). All of them have the drawback that the
gradients g(z)) tend to zero eventually along two directions alternatively.

In [6], we proposed the so-called alternate minimization (AM) gradient method,
that carries out exact line searches in odd iterations and minimizes the gradient
norm in even iterations. Namely,

%9 if ks s odd;

T 9
95, Ak
oM = ;TAgk (2.6)
7 ey .
- if k is even.
gF A2gy°

The AM method is proved to be @-superlinearly convergent for two-dimensional
quadratics, and @-linearly convergent in the any-dimension case. The numerical
results in [6] show that that the AM method is significantly better than the SD
method. To generalize the AM method for unconstrained optimization, we observed
that a suitable reduction on the k-th SD step can lead to a better function value
f(xgy2). Following this idea, we propose two shortened SD step methods

ap®t =yag” (2.7)

and

552 {fyga,fD, if k is odd;
(09 =

SD

2.8
ap”, if £ is even, (28)

where y; and -2 are some positive constants less than 1. It is suggested in [6] that
v = 0.8 and 7, = 0.75. Though the modifications are simple, the SS1 and SS2
methods avoid the zigzagging phenomenon to much extent and is comparable to the
AM method. In [10], Raydan and Svaiter gave the random choice

af NP = Oroi”, (2.9)

where 6 is randomly chosen with a uniform distribution on [0,2]. This random

SD method also much outperforms the SD method. However, despite the numerical

improvements over the classical SD method, it is difficult for the AM, SS1, SS2, and

random SD methods to beat the BB method when the problem condition is large.
Recently, Yuan [11] proposed an interesting choice for the stepsize

2
/0P = 1/05P)2 + dllgil3/ 5w 3 + 1/af?, + 1/af?

o) = (2.10)

An important property of this stepsize is that, for any 2-dimensional convex quadratic
function, if aq = af Dy = a%/ and oz = ag D then z4 gives the minimizer in ex-
act arithmetic. Then based on this choice, Yuan proposed two gradient algorithms,
Algorithm 2.1(A) and Algorithm 2.1(B). They are corresponding to the stepsize
formulae

YA _

(07 =

a,fD, if £ is odd;
(2.11)

akY, if £ is even

and

o B =

P, if mod(k,3) #0;
(2.12)

oY, if mod(k,3) = 0.

Both of the Algorithms are monotone since it is easy to see from (2.10) that aky <
2a;P. The numerical experiments in [11] show that Algorithm 2.1(B) is comparable
to the BB method for large scale problems and better for small scale problems.
However, it is also found that Algorithm 2.1(A) is far more worse than Algorithm
2.1(B).

3. Observing monotonic gradient methods

As the first author discussed with Roger Fletcher (private communications),
the BB method has an important property in numerical computations, that is, the
gradient components with respect to the eigenvectors of the function Hessian are
decreasing together. In this section, we will provide a numerical analysis showing
that Algroithm 2.1(B) also has this property, while the other monotone methods
mentioned in the previous section do not have.

In the quadratic case, it follows from (1.2) and (1.3) that

grt1 = (I — g A)gy. (3.1)

Since any gradient method is invariant under any orthogonal transformations and
the gradient components corresponding to the identical eigenvalues can be combined
(for example, see Fletcher [8]), we assume that the matrix A is

A=diag(A1,Aa,...,An) with 0 < XAy < Ao <--- < Ay (3.2)

Then denoting g = (g,(cl), - ,g,(cn))T, we have by (3.1) and (3.2) that

g = (- gl i=1,2,...,n (3.3)
We assume that g,(ci) # 0 for all k sufficiently large, since if g,(ci) = 0, it follows

from (3.3) that the component remains zero on all subsequent iterations, and hence
can be disregarded. To observe how the gradient components with respect to the
eigenvectors decrease, we define the following quantity

B min{ JL;OI |g,(CZJ)rj|; i=1,...,n} (3.4)
k= L1, 1., _ ’)
ma’X{Z]:O |9k+j|a i=1,...,n}

where L > 1 is some integer. The basic role of L is to smooth the curve of & with
L =1. Tt is set to 100 in our tests.

Now let us consider one concrete example. We assume that the function is (1.3)
and (3.2) where \; and g; are given by

AN=11i—10, ¢ =vi+i, fori=1,...,10. (3.5)

The dimension n is 10. This example is so easy that Algorithm 2.1(B) etc. only
requires a few iterations to provide a satisfactory solution. Therefore to enable long-
term observations, we normalize each gradient g; before computing gi1 by setting
9r = 9k/llgk |2, which does not affect the sequence {{x}. In other words, we calculate
the following sequences {u} and {v}} instead of (3.1):

Vi = vk - |k |2,
pi = i/ |l pell2, for k=1,2,... (3.6)
i1 = (I — apA) g

where 1 = g1 and v; = 1. The calculations of «a; and & can be done with the
sequence {ur}. The above technique is simpler than the one used in [4].

With this technique, we plot the sequence {{;} generated by different gradient
methods in Figure 3.1, where RAND, YA and YB stand for the random SD method
(2.9), Algorithm 2.1(A) and Algorithm 2.1(B), respectively. All the computations
are done with MATLAB (version 6.0.0.88). For the SS1 and SS2 methods, we use
the suggested values y; = 0.8 and vy, = 0.75 in [6].

From Figure 3.1, we see that the sequence {{;} tends to zero for all the tested
monotone gradient methods except Algorithm 2.1(B). By the definition of &, we
know that in this case, some component of the gradient approaches zero significantly
faster than other gradient components. However, for both Algorithm 2.1(B) and
the BB method, the sequence {&;} keeps relatively large and does not affect as
the iteration number increases. We also tested other different examples and found
that the above 10-dimensional is typical. To sum up, this numerical analysis shows
that like the BB method, Algorithm 2.1(B) has the property that the gradient
components with respect to the eigenvectors are decreasing together (In short, we
call this property as “descreasing together”). This might explain why Algorithm
2.1(B) performs much better than Algorithm 2.1(A) and similarly to the BB method.

0

10

- BB
~ : YB
10 50 |0

107

10700

107200

250 |

10

107301

I I I I I
0 1000 2000 3000 4000 5000 6000

Figure 3.1: The sequence {{;} generated by different gradient methods

Further, if we define the set
B={i:1<i<n, liminflg{|/|gxll: # 0} (3.7)
k—o00
and let ny, be the size of B, namely, n, = |B|. Then for the SD method, the method

(2.4), and the method (2.5), we know from the theroy in [9] and [5] that n, = 2.
Still taking the previous example, we have obtained Table 3.2.

Method [SD [RAND | SS1 [SS2 | AM | YA | YB | BB |
ny 2 2 3 [2] 4 [7 [10]10]

Table 3.2: The value ny for different gradient methods in the example

We have done a lot of experiments in which it always holds that nfD = nf 52 —
anND = 2, ng/B = n,’?B = n, and ny < n for all the monotone gradient methods

considered in this paper except YB. This observation might be of helpful in estal-
ishing some theoretical evidences for SS2 and RAND to explain why they are not
so good as YB and BB. However, for SS1, SS2, AM and YA, we also observed that
the value of n, may be different from those in Table 3.2. This indicates that the
theoretical analyses with these methods may be difficult.

4. Examples for the AM method and Algorithm 2.1(A)

The AM method and Algorithm 2.1(A) can be regarded the the main competitors
of Algorithm 2.1(B). In this section, we provide several examples for the AM method
and Algorithm 2.1(A). These examples expose the possible drawback of the methods,
and demonstrate to some extent why Algorithm 2.1(B) is more efficient.

At first, we consider the following 3-dimensional example for the AM method

A = diag(1, 8, 15), ¢ = (0.1, 0.2, 0.5)T.

There is no necessity to mention the vector b in (1.3) since we only concern the
gradient sequence {gx}. We still use the technique appeared in (3.6) to observe the
AM method. Instead of {£;}, we observe the sequence of inverse stepsizes {a; '}.
Figure 4.1 plots the subsequences {aziij} for 5 = 1,2,3,4. From Figure 4.1, we
see that each subsequence {aziij} and hence the whole sequence {a; '} cycles. The
period of the cycle with {a,;l} is 4 x 17 = 68. Further, we see that each subsequence
{o@iﬁr j} stays inside some interval that excludes the eigenvalues of A. Our numerical
experiments show that

{a5',} C [11.80, 13.95], {a3;',} C[1.20, 7.20] (4.1)

for all ¢ > 0. The distance between the whole sequence {a,;l} and the maximal
eigenvalue, 15, of the matrix A exceeds 1. Therefore by the relation (3.3), the AM
method is only linearly convergent for 3-dimensional convex quadratics although

14

135

13

12.5

12

N W OO N

11.5 1
0 20 40 60 80 100 0 20 40 60 80 100

14

13.5

13

12.5

12

N W OO N

11.5 1
0 20 40 60 80 100 0 20 40 60 80 100

(=3 (=4

Figure 4.1: The subsequences {a;ilﬂ-}; (1=1,2,3,4) by AM for a 3-d example

1 0.7
0.6
08 05
0.4
0.6
0.3
0.4 0.2
0.1
0.2 0
0 20 40 60 80 100 0 20 40 60 80 100
(=1) (=2)
0.7 0.8
0.6
0.6
0.5
0.4 0.4
0.3
0.2
0.2
0.1 0
0 20 40 60 80 100 0 20 40 60 80 100
(=3) (=4

@)
Figure 4.2: The subsequences {Hf}km}; (7 =1,2,3,4) by AM for a 4-d example

there is Q-superlinear convergence in the 2-dimensional case ([6]). From (4.1), we

can also see that for this example, the AM method has large stepsize—small stepsize

property, namely, a small stepsize will appear after each large stepsize and vice versa.
Next, we investigate a 4-dimensional example, where

A = diag(1, 5, 10, 15), g1 = (0.1, 0.2, 0.5, 1)7.

Again, we observed that the sequence {a;l} produces some kind of cycle and the
sequence {a,;l} generated by the AM method has the “large stepsize—small stepsize”
property. Specifically, we have that

{ap 1} C [12.50, 13.70], {ap;,} C [1.90, 4.20] (4.2)
for all 7 > 1. In this example, the second gradient component g,(f) tends to zero faster
than the others. See Figure 4.2 for the traces of different gradient components.

Now we turn to Algorithm 2.1(A) and consider the following 4-dimensional ex-

ample where
A =diag(1,2,7,8), g1 =(0.1,0.2, 0.5, 1)T.

: glgel+)j 9;%2+)]- g’%i)j gg:)_j -1

J 954l 954 ;1= 9542 gg4ill2 Yt

1| 7.27610290e-01 | 6.83239238e-01 | -5.13010519e-02 | 3.36988299¢-02 | 1.49055592
2 | 5.81661104e-01 | -5.67220588e-01 | 4.60592347e-01 | -3.57471473e-01 | 3.66248783
3 | 5.45668293e-01 | -3.32262650e-01 | -5.41639889¢-01 | 5.46327626e-01 | 4.95995821
4 | 6.96829452e-01 | -3.17156985e-01 | 3.56333686e-01 | -5.35599165e-01 | 7.56364527
5 | 9.31137060e-01 | -3.59232587e-01 | 4.08888373e-02 | 4.75796878e-02 | 1.15492622
6 | 2.74509134e-01 | 5.77681706e-01 | -4.54792213e-01 | -6.19752067e-01 | 5.32953302
7 | 4.09380828¢e-01 | 6.62523954e-01 | 2.61686043e-01 | 5.70078734e-01 | 4.12474384
8 | 4.24879469e-01 | 4.67554228e-01 | -2.49908442e-01 | -7.33768527e-01 | 7.81717848

Table 4.3: The cycle of Algorithm 2.1(A) for a 4-d example

It is found that the stepsize {ay} eventually tends to some cycle of eight different

(@)
values. Table 4.3 listed the approximate values of these stepsizes and {HZ%} (1 =

1,2,3,4). In the Table, k is some iteration number.

The above example also shows that Algorithm 2.1(A) is only linearly conver-
gent for 4-dimensional convex quadratics. With the same Hessian matrix, we also
tried some other initial values of g; and found that Algorithm 2.1(A) falls into the
same cycle eventually. Similar cycles occur for some other matrices, for example
A = diag([1, 2, 7.5, 8]). However, for some other 4-dimensional matrices, Algo-
rithm 2.1(A) may not fall into some cycle. For example, if A = diag(1,5,10,15), we
did not observe any cycle.

In the higher-dimension case, it is also possible that Algorithm 2.1(A) generates
some kind of cycle though the possibility becomes smaller. Consider a 5-dimensional
case with A = diag([1, 3, 15, 28, 30]). If the initial gradient is given by

g1 = (6.805619838091368e—01, 2.052618801618283e—01, 8.364198798483330e—01,
7.089206109330620e—01, 8.287079519725907¢—01)7,

which is obtained by the random number generator in MATLAB, then we observe
that g,(cg)/ llgk|l2 tends to zero and Algorithm 2.1(A) falls into a cycle similarly to
the 4-dimension case. In most cases, we found that Algorithm 2.1(A) also produces
some kind of cycle, but it is not stable. Figure 4.4 plots the trace of {agiﬁrl} of the
algorithm with g; = (0.1, 0.5, 0.3, 0.4, 1)T.

5. Some more efficient methods based on (2.10) or its variants

It is suggested in [11] to investigate other possibilities with the stepsize formula
(2.10), such as using a stepsize (2.10) after every m exact line search iterations.
In fact, both Algorithm 2.1(A) and Algorithm 2.1(B) are of such kind and takes a
stepsize (2.10) after every 1 and 2 exact line search iterations, respectively. These
methods have finite termination property for 2-dimensional convex quadratic due to

10

30

20 q

10 N

&

M

0 I I I I I
0 100 200 300 400 500 600

Figure 4.4: The subsequence {agiﬁrl} by Alg. 2.1(A) for a 5-d example

the proposition of (2.10) and the definition of these methods. However, we found
that only the choice m = 2, which is corresponding to Algorithm 2.1(B), provides
the property of “descreasing together”. Meanwhile, the numerical results using the
other choices are far more worse than those of Algorithm 2.1(B).

As will be shown, however, more efficient methods than Algorithm 2.1(B) can be
easily obtained based on the formula (2.10) or its variants. One idea is to consider a
larger class of gradient method that calculates the stepsize by (2.10) m, times after
mg exact line search iterations. In this case, we give the following variant of (2.10):

YV _ 2
%= SD SDy2 2/(SD 2 SD SD’ 51)
\/(1/ak_1 —1/a®)? + 4|gkll5/ (g2 l|gk—1l2)? + L/ agZ) + 1/ o
The formula (5.1) is equivalent to (2.10) if s;_; = —a}” gx_1, namely, the previous

iteration is obtained by an exact line search. Otherwise, if oy 1 # af D | they may
be different. We consider the gradient methods with oy given by

gl if mod(k,3) =1,
a = (5.2)
a{v, otherwise
and
oz,fD, if mod(k,4) =1 or 2,
a = (5.3)
akYV, otherwise,

respectively. In other words, the above two methods calculate the stepsize by (5.1)
twice after 1 and 2 exact line search iterations, respectively. It is easy to see that

11

the two methods are still monotone. Meanwhile, with the same technique (3.6), we
found that they also have the property of “descreasing together”. In addition, the
numerical results of the methods will become worse if akyv is replaced by akY in the
calculation of «y.

Another idea of modifying 2.1(B) is to calculate a stepsize by (2.10) with &
replaced by k—1 after every two SD iterations. Its basic motivation is that a,f 92 and
af 91 are already computed and used in the previous two iterations. Mathematically,
the stepsize has the form

P, if mod(k,3) # 0,
A = (5.4)
. if mod(k,3) = 0.

Since it is possible that o} ; > 2037, the method (1.1)-(5.4) is not a monotone
method any more. An analogue of the formula (5.4) is as follows:

apP?, if mod(k,3) # 0,
A = (5.5)
ar?,. if mod(k,3) =0,
T
where ayP? = % and
k
2
o= . (5.6)

1 L\ 495 Agy, 1 1
(5t =)+ ey s+t +

Similarly to (2.10), the formula (5.6) has a property that, if a; = a7 2, ay = ad?,
and a3 = a5P?, then x4 is the minimizer of any 2-dimensional convex quadratic
function. Using the technique in (3.6), we found that the methods (5.4) and (5.5)
also have the property of “descreasing together”.

We tested the BB method, Algorithm 2.1(B), and the gradient methods (5.2),
(5.3), (5.4) and (5.5) for a class of quadratic problems

1
f(w) = 5a" Diag(\y, -+ M)z, @ € R

We consider three values 102, 103, 10* for both the dimension n and the condition
number Cond. We let \; = Cond, A\, = 1 and X\;(i = 2,---,n — 1) be randomly
generated in the interval (1,)\,,). The starting point mgz) (1=1,---,n) are randomly
generated in the interval [—5,5]. The stopping condition is

lgkll2 <e. (5.7)

Four values 10~!, 1072, 10~* and 10~ are used for € so that a solution with different
precision is obtained. For each case, 10 runs are made and the average numbers of
iterations required by each algorithm are taken down in Table 4.5. The winner(s)
for each problem is marked in bold.

12

n Cond| e BB |21B) | (5.2) (5.3) | (5.4)] (5.5)
102 102 | 10! 427 38.6| 38.6 42.1 40.2 39.4
1072 59.8 54.9 | 54.3 55.0 56.4 55.2
10~4 88.9 80.8 83.7 80.3 85.1 83.7
10°%] 1478 | 139.3 | 140.9 134.1 | 136.8 | 129.1
102 10® | 107' | 1345| 1226 | 120.1| 105.8 | 129.1 | 119.3
1072] 2043 186.3 | 155.8 | 143.9 | 170.8 | 166.2
1007] 289.7 | 295.6 | 251.8 | 221.4 | 279.3| 278.2
1078 | 505.6 | 511.9 | 4248 | 376.9 | 4470 | 4405
10> 10* | 107" | 422.8| 470.3 | 361.8 | 304.3 | 402.2 | 413.5
1072] 6289 670.6 | 538.3| 489.4 | 573.4| 590.9
1077] 964.8 | 1275.9 | 823.8 | 727.3 | 936.2 | 949.7
108 [1509.9 | 2352.3 | 1475.8 | 1243.1 | 1614.7 | 1665.8
10> 102 | 10! 51.2 | 46.5 49.2 49.8 48.3 47.3
1072 66.2 | 62.7 62.8 649 | 62.7 63.9
10~% 94.4 93.0 95.6 89.9 92.4 92.2
1078 | 1476 | 150.8 | 148.1 | 144.7 | 1479 | 1472
103 10% |10t | 152.7| 151.6 | 166.0 | 132.1 | 155.4 | 154.9
10°2] 1933 214.8] 221.0| 180.7 | 201.6 | 206.9
107%] 2999 | 319.8 | 314.7| 280.0 | 298.1| 312.6
1078 | 505.9 | 536.9 | 494.5 | 437.3 | 509.9 | 499.7
103 10* |10t | 515.7| 557.1 | 540.6 | 428.0 | 464.4 | 497.7
1072 673.0 | 865.0 | 719.7| 571.1| 651.5| 676.9
1077 [1060.0 | 1423.4 | 1086.2 | 800.4 | 1007.7 | 1065.4
1078 [1609.7 | 2457.9 | 1750.7 | 1412.4 | 1819.5 | 1734.9
104 102 | 107! 59.3 55.8 | 51.8 55.8 55.1 54.5
102 72.2 68.7 68.2 71.0 67.6 | 67.2
10~*] 100.3 97.1 | 96.6 100.7 97.9 98.1
108] 1526 | 152.8 | 148.3 150.8 | 151.6 | 149.9
10 10% [10°Y| 181.5| 176.6 | 184.6 | 157.7 | 176.6 | 174.8
1072] 2292 2346 | 233.3] 205.0 | 229.5 | 226.8
1007 3402 332.8| 3326 293.5| 327.0| 317.8
1078 539.5| 531.0 | 534.8| 471.4| 513.7| 5175
10* 10* |10°'| 5704 | 6145 | 567.8 | 476.3 | 520.8 | 580.7
102 7979 | 881.3] 781.1 | 634.5| 767.8 | 818.0
10~* 1 1075.9 | 1408.0 | 1141.0 | 928.9 | 1207.6 | 1139.3
108 [1635.1 | 2568.0 | 1667.4 | 1546.4 | 1995.7 | 1882.3

Table 4.5: Numerical comparisons of different gradient methods

13

From Table 4.5, we see that all the methods (5.2), (5.3), (5.4) and (5.5) perform
better than Algorithm 2.1(B). Specifically, we can see that the method (5.3) is the
winner for the most cases and uniformly better than the BB method. For the case
that ¢ = 1078 and Cond = 10%, the method (5.3) saves 11.04% of the iteration
numbers in the average sense comparing with the BB method.

6. Conclusion and discussion

In this paper, we have introduced a new technique, (3.6), which enables a long-
term observation for the gradient method. Our analyses show that one of the new
algorithms, Algorithm 2.1(B), which is proposed by Yuan [11] recently, shares with
the BB method the property that all the gradient components with respect to the
eigenvectors of the function Hessian are decreasing together. Meanwhile, the other
monotone gradient methods we tested do not possess this property. This might
partly explain why Algorithm 2.1(B) is comparable to the BB method in numerical
computations.

We have provided several numerical examples showing that the stepsizes gener-
ated by the AM method and the other algorithm by Yuan, Algorithm 2.1(A), may
fall into cycles. However, we did not find any similar cycle for Algorithm 2.1(B) in
numerical computations. Although all our analyses are numerical, some of the anal-
yses, for example, the 4-dimensional example for Algorithm 2.1(A) could be strictly
established in theory.

We have also found some more efficient gradient methods based on the formula
(2.10) or its variants. Specifically, our numerical results show that the method (5.3),
which is still monotone, is uniformly better than the BB method. Detailed/sound
theoretical analysis on these alternatives or even other possibility need further stud-
ies. We feel that there is much room for obtaining some new formula even more
efficient than (2.10). As the formula (2.10) is derived under the assumption that
the step in the previous iteration is an exact line search step (SD step), we could do
the same thing without this assumption. Namely, it would be possible to obtain a
formula such as

ap® = o(ak_1,08", Gs g1

Here aj_1 is the stepsize actually taken in the previous iteration and @ is some
function.

Additional results of the examples §4 are that, the AM method is only linearly
convergent for 3-dimensional convex quadratics, and Algorithm 2.1(A) is only lin-
early convergent if n = 4. Noting that the sequence {vx} in (3.6) is the same as
{llgk|l2}, we may also use (3.6) to observe the convergence behavior of the gradient
method. Assume that the function is provided by (1.3) and (3.1) with \; and ¢; given
by (3.5). We observed that Algorithm 2.1(B), the method (5.2), and the method
(5.3) are all superlinearly convergent in the case that n = 3. Further, it seems to us
that the convergence of the method (5.2) is still superlinear even if n = 4. We do
not know yet whether these results can be established or not in theory.

14

Acknowledgements. The first author of this paper is supported by the Alexander
von Humboldt Foundation and the Chinese NSF grants 10171104 and 40233029. The
second author is partly supported by the Chinese NSF grants 10231060.

References

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

H. Akaike, On a successive transformation of probability distribution and its
application to the analysis of the optimum gradient method, Ann. Inst. Statist.
Math. Tokyo, 11 (1959), pp. 1-17.

J. Barzilai and J. M. Borwein, Two point step size gradient methods, IMA J.
Numer. Anal., 8 (1988), pp. 141-148.

A. Cauchy, Méthode générale pour la résolution des systéms d’equations simul-
tanées, Comp. Rend. Sci. Paris, 25 (1847), pp. 46-89.

Y. H. Dai and R. Fletcher, On the Asymptotic Behaviour of some New Gradient
Methods, Numerical Analysis Report NA /212, Department of Mathematics,
University of Dundee, 2003.

Y. H. Dai and X. Q. Yang, A New Gradient Method with an Optimal Step-
size Property, Research report, Institute of Computational Mathematics and
Scientific/Engineering Computing, Chinese Academy of Sciences, 2001 .

Y. H. Dai and Y. X. Yuan, Alternate Minimization Gradient Method, TMA
Journal of Numerical Analysis, 23 (2003), pp. 377-393.

H. C. Elman and G. H. Golub, Inezact and preconditioned Uzawa algorithms
for saddle point problems, STAM J. Numer. Anal., 31 (1994), pp. 1645-1661.

R. Fletcher, On the Barzilai-Borwein Method, Research report, Department of
Mathematics, University of Dundee, 2001.

G. E. Forsythe, On the asymptotic directions of the s-dimensional optimum
gradient method, Numerische Mathematik, 11 (1968), pp. 57-76.

M. Raydan and B. F. Svaiter, Relazed Steepest Descent and Cauchy-Barzilai-
Borwein Method, Computational Optimization and Applications, 21 (2002), pp.
155-167.

Y. Yuan, A new stepsize for the steepest descent method, Research report, In-
stitute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Sciences, Chinese Academy of Sciences,
2004.

15

