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Abstract. In this paper, we study large scale nonlinear systems of equations and
nonlinear least square problems. We present subspace methods for solving these
two special optimization problems. The subspace methods have the characteristic
to force the next iteration in a low dimensional subspace. The main technique is
to construct subproblems in low dimensions so that the computation cost in each
iteration can be reduced comparing to standard approaches. The subspace approach
offers a possible way to handle large scale optimization problems which are now
attracting more and more attention. Actually, quite a few known techniques can be
viewed as subspace methods, such as conjugate gradient method, limited memory
quasi-Newton method, projected gradient method, and null space method.
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1. Introduction

In this paper, we consider two closely related problems of solving non-
linear equations:

Fi(x) = 0, i = 1, ..., m, (1)

where Fi(x) are differentiable functions in <n, and minimizing the least
square norm of the vector F (x) = (F1(x), F2(x), ..., Fm(x))T , namely

min
x∈<n

‖F (x)‖2
2 =

m∑

i=1

Fi(x)2. (2)

Problems (1) and (2) have various applications in physics, chemistry,
biology, engineering, economics, finance, and many other fields. These
two special optimization problems have been studied extensively and
there are already many methods for solving them, such as Newton’s
method, inexact Newton’s method, Gauss-Newton method, Levenberg-
Marquardt method and trust region method, for example see (Ortega
and Rheinboldt, 1970; Dennis and Schnale, 1993; Kelly, 1995; Nocedal
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Subspace Methods for Nonlinear Equations and NLS 3

and Wright, 1999). In recent years, as many important practical prob-
lems involve in great number of variables(say, at the magnitude of
millions of variables), large scale optimization problems, including large
scale nonlinear equations and large scale nonlinear least squares have
been attracting more and more attention from researchers, for example
see (Toint, 1987; Gould et al., 2005; Gould and Toint, 2007). Most
large scale problems have either sparse property or special structure,
therefore special approaches, such as partial separability and structure-
exploiting, should be and can be applied to such problems (Mizutani
and Demmel, 2003; Bouaricha and Moré, 1997).

We consider another approach, using subspace techniques, to large
scale problems. Our motivation is based on the following observation.
The general approach for a nonlinear problem is to replace it by either
a linear or quadratic or any other simpler problem in each iteration.
Normally the simplified model is some kind of approximation to the
original model, and both the original and the approximated model are
defined for the same set of variables. Thus, for large scale nonlinear
problems, most conventional methods will have a linear, or quadratic,
or some other simpler problem in the same dimensional space, which
means that at each iteration we need to solve a large scale linear (or
quadratic or some other simple) problem. But, quite often, large scale
linear systems are solved by subspace techniques, which means that
an approximate solution for the large scale linear systems is generally
an exact solution of a reduced linear system in a lower dimensional
subspace, such as the Krylov subspace if the linear system is solved
by the truncated conjugate gradient method(Golub and Van Loan,
1996; Steihaug, 1983; Toint, 1981; Yuan, 2000b). Hence, we can see that
the standard linearization approach, for large scale nonlinear problems,
in fact has two stage approximations: the first stage is to approximate a
nonlinear problem by a linear problem, and the second one is to replace
the large scale linear problem by a small scale linear problem. In this
paper, we propose an approach which tries to avoid this detour. Our
short-cut is to construct or define a small scale linear problem in a low
dimension subspace directly, and to force such a small linear system
approximating the original large scale nonlinear problem as good as
possible. A small scale linear system normally can be expressed as
a linear system defined in a proper low dimensional subspace. Thus,
in each iteration of the methods we will propose in the following, we
solve a low dimensional subspace subproblem. Other motivations for
considering subspace approach can be found in Yuan (2007).

This paper is organized as follows. In the next section, we will
give some simple examples of algorithms that have certain subspace
structures. In section 3, a model algorithm using subspace approach
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4 Ya-xiang Yuan

for nonlinear equations is given and some possibilities for choices of
the subspaces are also discussed. In section 4, subspace techniques for
nonlinear least squares are presented.

2. Examples of subspace approaches

In this section, we consider the general approach by subspace tech-
niques. For simplicity, we consider the following unconstrained opti-
mization problem:

min
x∈<n

f(x) (3)

where f(x) is a smooth nonlinear function. The most simple and trivial
example of subspace method is the gradient method:

xk+1 = xk − αk∇f(xk), (4)

as the new iterate point xk+1 defined by the gradient method is the
solution of the one dimensional problem

min
|α|≤|αk|

f(xk)− α(∇f(xk))T∇f(xk). (5)

The objective function in the above line is just the one dimensional
approximation (in the subspace Span{∇f(xk)} ) to the first order
Taylor expansion of the original objective function (1).

Another obvious example of subspace method is the conjugate gra-
dient method. Nonlinear conjugate gradient methods define the search
direction dk by

dk = −gk + βkdk−1, (6)

where gk = ∇f(xk), and dk−1 is the search direction the previous
iteration. Thus, no matter which nonlinear conjugate gradient method
one uses, the algorithm will give the next iterate point in the subspace

xk + Span{gk, dk−1}. (7)

Therefore, Stoer and Yuan (1995) studied a successive 2-dimensional
search algorithm, based on a model subproblem

min
d∈Span{−gk,dk−1}

Q̄k(d) ≈ f(xk + d), (8)

where Q̄k(d) is a quadratic function. Problem (8) is to minimize a
2 dimensional quadratic function. Except for the term depending on
gT
k ∇2f(xk)gk, this quadratic function can be easily defined, as all the
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other terms are explicitly given or can be estimated by using the re-
lation ∇2f(xk)(xk − xk−1) ≈ ∇f(xk)−∇f(xk−1). Therefore, in a two
dimensional approach the approximate model is fixed except for one
number, which is the reduced Hessian along the current gradient di-
rection. This is also true for a higher dimensional subproblem provided
the higher dimension subspace model in the k− iteration is defined
in a subspace being a subset of the subspace spanned by the steepest
descent direction and all the previous steps xi+1 − xi(i = 1, ..., k − 1).

The limited memory quasi-Newton method(Liu and Nocedal, 1989)
also has the subspace property. In fact, one can show that limited
memory quasi-Newton algorithms, no matter with line search or trust
region, will always produce a step in the subspace

Span{gk, sk−1, ..., sk−m, yk−1, ..., yk−m}, (9)

where sk = xk+1 − xk and yk = gk+1 − gk. Indeed, a trust region
algorithm using this subspace is given by Wang et al. (2004). Even
for the standard quasi-Newton updates, we can also establish subspace
property results. To be more precise, if the initial quasi-Newton matrix
is a scale matrix, the standard quasi-Newton method (with line searches
or trust regions) will generate the k−th iterate point in the subspaces

x1 + Span{g1, g2, ..., gk−1}. (10)

More details can be found in (Gill and Leonard, 2001; Vlček and
Lukček, 2002; Wang and Yuan, 2006).

We can give a model subspace algorithm for unconstrained opti-
mization as follows.

ALGORITHM 1. (A model subspace algorithm for unconstrained op-
timization)

Step 1 Given x1, Define S1, ε > 0, k := 1.

Step 2 Solve a subspace subproblem:

min
d∈Sk

Q̄k(d) = gT
k d +

1
2
dT Bkd (11)

obtaining dk. If ‖dk‖ ≤ ε then stop.

Step 3 Carry out line search to obtain αk > 0, set

xk+1 = xk + αkdk. (12)

Step 4 Generate Sk+1 and Q̄k+1(d).
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6 Ya-xiang Yuan

Step 5 k := k + 1, Go to Step 2.

The above algorithm is only a frame for constructing subspace meth-
ods. It needs to have additional implementation details. For example,
we need to choose a line search technique to ensure the global conver-
gence of the algorithm. How to choose the subspace Sk+1 and how to
update the quadratic model Q̄k(d) are also important for the efficiency
of the algorithm.

Algorithm 1 is a slight modification of the standard quasi-Newtion
algorithm for unconstrained optimization (for example, see (Conn et
al., 2000; Fletcher, 1987; Sun and Yuan, 2006)). The main difference
between them is the constraint requiring the search direction dk to be in
the subspace Sk. Thus, the essential issue of a subspace algorithm is how
to choose the subspace Sk. Yuan (2007) discussed some possible choices,
such as Span{−gk, sk−1, ..., sk−m} and Span{−gk, yk−1, ..., yk−m}.

3. Subspace techniques for nonlinear equations

Now, we consider subspace techniques for nonlinear equations system
(1). Suppose that at the k−th iteration, we have the current iterate
point xk and a subspace Sk. Denote the number of dimension of Sk to
be ik and q

(k)
1 , q

(k)
2 , ..., q

(k)
ik

are a set of linearly independent vectors in
Sk. We would like to find the next iterate point xk+1 in such a way that
the increment xk+1 − xk is in the subspace Sk. Thus, we would like to
have

Fi(xk + Qkz) = 0, i = 1, ..., m, (13)

for z ∈ <ik , where

Qk = [ q
(k)
1 , q

(k)
2 , ..., q

(k)
ik

] . (14)

The linearized system for (13) is

Fi(xk) + zT QT
k∇Fi(xk) = 0, i = 1, ..., m, (15)

which can be written as

F (xk) + JkQkz = 0, (16)

where Jk is the Jacobian matrix of F (x) at xk:

Jk = J(xk) = [ ∇F1(xk), ∇F2(xk), ..., ∇Fm(xk) ]T . (17)

However, linear system (16) may not have a solution as the number
of equations may not be the same as the number of the variables.
Therefore, we can consider the reduced system

P T
k [ F (xk) + JkQkz ] = 0, (18)
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where
Pk = [ p

(k)
1 , p

(k)
2 , ..., p

(k)
ik

] , (19)

is a full column rank matrix. We do not need the full Jacobian matrix
Jk for solving the reduced linear system (18). Instead, we only require
an approximate matrix Mk ≈ P T

k JkQk, which is a square matrix in
<ik×ik . It is easy to see that normally Mk has much fewer elements
than the Jacobian matrix Jk. Thus, a general subspace method for
nonlinear equations can be described as follows.

ALGORITHM 2. (A general subspace algorithm for nonlinear equa-
tions)

Step 1 Given x1, ε > 0, k := 1.

Step 2 Generate Pk, Qk and Mk ≈ P T
k J(xk)Qk;

Compute the vector zk by solving:

P T
k F (xk) + Mkz = 0, (20)

Set dk = Qkzk. If ‖dk‖ ≤ ε then stop.

Step 3 Carry out a line search, obtaining a stepsize αk and set

xk+1 = xk + αkdk. (21)

Step 4 k := k + 1, Go to Step 2.

For the very special case when m = n and F (x) is linear, if we set
Pk = Qk = ek ∈ <n×1 and if we set αk = 1, the first n iterations of the
above algorithm is exactly one Gauss-Seidel iteration.

For general nonlinear equations, we can also choose Pk = Qk. How-
ever, such a choice may not always ensure that the search direction is
a descent direction for the given merit function of the nonlinear equa-
tions. Suppose we use the L∞ penalty function as the merit function,
namely

P∞(x) = ‖F (x)‖∞, (22)

we can sort the violations in descent order:

|Fj1(xk)| ≥ |Fj2(xk)| ≥ ... ≥ |Fjm(xk)|. (23)

One possible way for choosing Pk is

Pk = [ ej1 , ej2 , ..., ejik
]. (24)

The following result is easily seen.
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LEMMA 3. Suppose |Fjik+1(xk)| < ‖F (xk)‖∞, if the search direction
dk satisfies

P T
k [ F (xk) + Jkdk ] = 0, (25)

then dk is a descent direction of ‖F (x)‖∞ at xk.

Proof. Under the condition |Fjik+1(xk)| < ‖F (xk)‖∞, relation (25)
implies that

d

dα
(‖F (xk + αdk)‖∞)|α=0 =

d

dα

(
max

1≤i≤ik
|Fji(xk + αdk|)

)
|α=0

= −‖F (xk)‖∞ < 0. (26)

This shows that dk is a descent direction of ‖F (x)‖∞. Q.E.D.
Choice (24) is also reasonable if the merit function is ‖F (x)‖1 =∑m

i=1 |Fi(x)|, though in this case there is no theoretical guarantee that
dk will be a descent direction any more.

Now, we turn to the issue of choosing Qk, the subspace for the search
direction. A straightforward generalization to the Gauss-Seidel method
is to choose Qk = Pk. Namely, we can use

Qk = [ ej1 , ej2 , ..., ejik
], (27)

where ji are defined by (23). We can also choose different Qk. Consider
the type of general Qk consisting of coordinate directions:

Qk = [ el1 , el2 , ..., elik
], (28)

where lj(j = 1, ..., ik) are a subset of {1, 2, ..., n}. Such a choice of the
subset indicating that a trial step in the subspace spanned by these
coordinate directions will make the linearized functions with index set
Ik = {ji1 , ji2 , .., jik} zero. In order to make the linearized functions with
index set {1, 2, ..., m} \ Ik having less increases, it is natural to require
‖dk‖2 as small as possible. Intuitively, it is more or less equivalent to
requiring the matrix

(P T
k JkQk)−1 (29)

as small as possible. But, estimation of (P T
k JkQk)−1 is not easy. There-

fore, we suggest that Qk can be chosen so that ‖P T
k JkQk‖ is as large as

possible for some norm. For example, Qk can be so chosen in order to
maximize the sum of the absolute values of all the elements of P T

k JkQk.
Similar to unconstrained optimization, we can use the previous search

directions. Consider at the k − th iteration, we already have k − 1
previous directions si(i = 1, 2, ..., k − 1). We can let

Qk = [ s1, s2, ..., sk−1, uk ] (30)
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where uk, not in the subspace Span{s1, s2, ..., sk−1}, is a new direction
that we should add to the subspace in the k−th iteration, otherwise
the iterations may be trapped into a lower dimensional subspace. There
are many ways to choose uk. It can be randomly generated or be set
to a coordinate unit vector. uk can also be the residual vector −F (xk)
if m = n. One good property of (30) is that we can take advantage of
the relations

Jksi = Jk(xi+1 − xi) ≈ F (xi+1)− F (xi) = yi. (31)

Therefore we can let

Mk = P T
k [ y1, y2, ..., yk−1, vk ], (32)

with vk being an approximation to Jkuk. One way to approximate
vk ≈ Jkuk is by computing an additional function value F (xk + uk)
and setting

vk = F (xk + uk)− F (xk). (33)

Actually we do not need to know the whole vector vk in order to com-
pute the search direction dk. All we need is a shorter vector P T

k vk. In the
special case m = n, we can let Pk = Qk, then the first k−1 elements of
P T

k vk can be obtained by (31). Thus, we only require to approximate
one number uT

k Jkuk. If uk is a coordinate direction ej , this number
uT

k Jkuk can be easily approximated by an additional calculation of
Fj(xk + ej), namely

eT
j Jkej ≈ Fj(xk + ej)− Fj(xk) . (34)

It is also possible to allow that Pk and Qk have different dimensions.
For example, at iteration k, we can choose two positive integers r1 and
r2, and let Pk ∈ <n×r1 and Qk ∈ <n×r2 . If both r1 and r2 are much
less than n, the linear system (18) is much smaller than the Newton’s
equation F (xk) + Jkd = 0. Without requiring r1 = r2 would make (18)
have no solution or have infinitely many solutions. One way is to find a
least squares solution of (18), which will be very similar to the method
that we discussed in the next section. Another possible way is to try
to minimize ‖P T

k [F (xk) + JkQkz]‖1 or ‖P T
k [F (xk) + JkQkz]‖∞.

4. Subspace techniques for nonlinear least squares

In this section, we consider the nonlinear least square problems (2).
Similar to the previous section, we let

Sk = Span{q(k)
1 , q

(k)
2 , ..., q

(k)
ik
} (35)

icota2007-yyx-revised.tex; 4/05/2008; 19:06; p.9



10 Ya-xiang Yuan

and define Qk by (14). The second order Taylor expansion of ‖F (x)‖2
2

is
‖F (xk) + Jkd‖2

2 + dT Wkd, (36)

where Wk ∈ <n×n is defined by

m∑

i=1

Fi(xk)∇2Fi(xk). (37)

If we consider vectors d in the subspace Sk, we would get the quadratic
model

Q̄k(z) = ‖F (xk) + JkQkz‖2
2 + zT Bkz, (38)

where Bk ∈ <ik×ik approximates the reduced matrix

QT
k WkQk =

m∑

i=1

Fi(xk)QT
k∇2Fi(xk)Qk. (39)

We can give a subspace algorithm for nonlinear least squares as
follows.

ALGORITHM 4. (A subspace trust region algorithm for nonlinear
least squares)

Step 1 Given x1 ∈ <n, ∆1 > 0, Choose matrices Q1 and B1 , Given
ε > 0, k := 1.

Step 2 Solve the subspace subproblem:

min
z∈<|ik|

Q̄k(z) = ‖F (xk) + JkQkz‖2
2 + zT Bkz (40)

s. t. ‖z‖2 ≤ ∆k, (41)

obtaining zk, set sk = Qkzk. If ‖sk‖ ≤ ε then stop.

Step 3 Define

rk =
‖F (xk)‖2

2 − ‖F (xk + sk)‖2
2

Q̄k(0)− Q̄k(zk)
. (42)

Set
xk+1 =

{
xk + sk if f(xk + sk) < f(xk);
xk otherwise.

(43)

∆k+1 =





1
2‖zk‖2 if rk < 0.1;
2∆k if rk > 0.9 and 2‖zk‖ > ∆k ;
∆k otherwise.

(44)

Step 4 Generate Qk+1 and Bk+1.
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Step 5 k := k + 1, Go to Step 2.

The above algorithm is a modification of the standard trust region
algorithm for nonlinear least squares(Yuan, 1998; Yuan, 2000a) by
using our subspace approach. If the subspace Sk contains a descent
direction for function ‖F (x)‖2

2 at xk, we can get a lower bound for the
predicted reduction Q̄k(0)− Q̄k(zk), which is stated as follows.

LEMMA 5. If there is a nonzero vector z̄k such that d̄k = Qkz̄k ∈ Sk

and that
d̄T

k JT
k F (xk) < 0, (45)

and if zk is the minimizer of (40)-(41), then

Q̄k(0)− Q̄k(zk) ≥ 1
2
ξ∆(xk)min

{
1,

ξ∆(xk)
2‖Bk‖2∆2

k

}
, (46)

where

ξ∆k
(xk) = max

‖αz̄k‖2≤∆k

[‖F (xk)‖2
2 − ‖F (xk)− αJkQkz̄k‖2

2]. (47)

Proof. By definition of zk, we have that

Q̄k(0)− Q̄k(zk) ≥ Q̄k(0)− min
‖αz̄k‖2≤∆k

Q̄k(αz̄k). (48)

From the convexity of ‖F (xk) + JkQkz‖2
2, similar to Powell (1970) and

Yuan (1998), we have that

Q̄k(0)− min
‖αz̄k‖2≤∆k

Q̄k(αz̄k) ≥ 1
2
ξ∆(xk)min

{
1,

ξ∆(xk)
2‖Bk‖2∆2

k

}
, (49)

where ξ∆k
(xk) is defined by (47). Q.E.D.

In particularly, if −J+
k F (xk) ∈ Sk and −J+

k F (xk)/‖J+
k F (xk)‖2 is

one column of Qk, then

Q̄k(0)− Q̄k(zk) ≥ 1
2
η∆(xk)min

{
1,

η∆(xk)
2‖Bk‖2∆2

k

}
, (50)

where

η∆k
(xk) = max

‖αJ+
k

F (xk)‖2≤∆k

[‖F (xk)‖2
2−‖F (xk)−αJkJ

+
k F (xk)‖2

2]. (51)

Using (51), we can establish the global convergence of Algorithm 4.
In the above algorithm 4, the trust region constraint is imposed on the
reduced variables z instead of the original variables x. Thus, the actual
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length of the trial step sk depends on both the length of zk and the
matrix Qk. For example, if we double the matrix Qk, the trial step sk

will be also doubled. Thus it is reasonable to choose Qk in such a way
that all the columns of Qk are unit-length vectors. For example, si can
be replace by si/‖si‖2. For numerical reasons, Qk can be chosen such
that QkQ

T
k is a projection from <n to Sk.

Instead of imposing the trust region constraint to zk, we can also
directly require the trial step in the original space to satisfy the trust
region condition. Namely we can modify the statements of Algorithm
4 slightly so that sk is the solution of

min
s∈Sk

Q̂k(s) = ‖F (xk) + Jks‖2
2 + sT B̂ks, (52)

s. t. ‖s‖2 ≤ ∆k. (53)

Thus any orthogonal basis of Sk consists of a matrix Qk. We can choose
the Qk properly so that the subproblem (40)-(41) is easy to solve and
the approximate matrix Bk = QT

k B̂kQk is easy to obtain.
Similar to unconstrained optimization, an obvious choice is

Sk = Span{−J+
k F (xk), sk−1, sk−2, ..., s2, s1}. (54)

Other choices are also possible, for example we can replace −J+
k F (xk)

in (54) by a randomly generated unite vector or any descent coordi-
nate direction. One thing that is different from the previous section is
the approximation of Bk. Because this matrix is an approximation to
the projection (or reduction) of the Hessian matrix (37), it looks like
that we will have to use some second order information of F (x) which
seems impossible. However, similar to the techniques discussed in the
previous section, if we use (54), most elements of Bk can be expressed
by si∇2Ft(xk)sj . Thus, all we need to do is trying to use the function
values Ft(xj), Ft(xj+1), Ft(xi) and Ft(xi+1) to get a good estimate to
the term si∇2Ft(xk)sj .

In the objective function in (40), we can replace the residual of
the linearized equations F (xk) + JkQkz by a reduced residual, which
would be a shorter vector. For example, we can consider the following
subproblem

min
z∈<|ik|

Q̄k(z) = ‖ P T
k [F (xk) + JkQkz] ‖2

2 + zT Bkz (55)

s. t. ‖z‖2 ≤ ∆k, (56)

where Pk ∈ <m×pk with pk << m. One special case is that all the
columns of Pk are the canonical vectors ei, which means that only a
selection of pk terms are used in the sum of squares. Similar to the
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previous section, we can select the terms with large residuals at the
current iteration.

5. Discussions

We have presented subspace methods for solving large scale nonlinear
equations and nonlinear least squares problems. These methods are
specially designed for large scale problems as they only solve subprob-
lems in subspace with dimension much less than the dimension of the
original large scale problems. Such methods differ from the standard
optimization methods because they require the trial step or the search
direction in a low dimensional subspace. The key issues for such meth-
ods are how to choose the subspaces and how to obtain the approximate
model in corresponding subspaces quickly. In the paper we give some
suggestions on these two issues. Of course there are definitely many
other possibilities except what we have discussed above. And moreover
we have not yet tested our ideas by numerical examples. This indicates
that further studies are needed on subspace methods.
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