
Journal of Computational Mathematics, Vol.20, No.6, 2002, ??–??.

A NOTE ON THE NONLINEAR CONJUGATE GRADIENT
METHOD ∗1)

Y.H. Dai Y. Yuan
(State Key Laboratory of Scientific and Engineering Computing, Institute of Computational

Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences, P. O. Box 2719,
Beijing 100080, China)

Abstract

The conjugate gradient method for unconstrained optimization problems varies with
a scalar. In this note, a general condition concerning the scalar is given, which ensures
the global convergence of the method in the case of strong Wolfe line searches. It is
also discussed how to use the result to obtain the convergence of the famous Fletcher-
Reeves, and Polak-Ribiére-Polyak conjugate gradient methods. That the condition cannot
be relaxed in some sense is mentioned.
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1. Introduction

The conjugate gradient method is highly useful for minimizing a smooth function of n
variables,

min
x∈Rn

f(x), (1.1)

especially when n is large. It has the following form

xk+1 = xk + αkdk, (1.2)

dk =
{ −gk, for k = 1;
−gk + βkdk−1, for k ≥ 2,

(1.3)

where gk = ∇f(xk), αk is a stepsize obtained by a one-dimensional line search and βk is a scalar.
Because αk is not the exact one-dimensional minimizer in practice and f is not a quadratic,
many formulas have been proposed to compute the scalar βk. Two well-known formulas for βk

are called the Fletcher-Reeves (FR), and Polak-Ribiére-Polyak (PRP) formulas (see [8, 16, 17]).
They are given by

βFR
k = ‖gk‖2/‖gk−1‖2 (1.4)

and
βPRP

k = gT
k (gk − gk−1)/‖gk−1‖2 (1.5)

respectively, where ‖ · ‖ means the Euclidean norm. See Dai & Yuan [2], Daniel [6], Fletcher
[7], Hestenes & Stiefel [11], Liu & Storey [13] etc. for other formulas of βk.

In recent years, many authors studied the nonlinear conjugate gradient method especially
from the angle of global convergence. Because its properties can be very different with the
choice of βk (see Powell [14]), the nonlinear conjugate gradient method was often analyzed
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individually, for example, see Al-Baali [1], Dai & Yuan [3, 4], Gilbert & Nocedal [9], Grippo
& Lucidi [10], Liu et al [12], Powell [15], Qi [19] and Touati-Ahmed & Storey [20]. Dai et
al [5] studied the general conjugate gradient method in the absence of the sufficient descent
condition and proposed a sufficient condition ensuring the global convergence (see also Lemma
2.3). Since the nonlinear conjugate gradient method varies with the choice of βk, we wonder
what condition on βk guarantees the convergence of the method.

This paper is organized as follows. After giving some preliminaries in the next section, we
will prove in Section 3 that a mild condition on βk results in global convergence of the nonlinear
conjugate gradient method in the case of strong Wolfe line searches. Section 4 discusses how
to use the result to obtain the convergence of the famous FR, and PRP conjugate gradient
method. In the last section, it is mentioned that the condition on βk cannot be relaxed in some
sense.

2. Preliminaries

For convenience, we assume that gk 6= 0 for all k, for otherwise a stationary point has been
found. We give the following basic assumption on the objective function.

Assumption 2.1. (i) The level set L = {x ∈ <n : f(x) ≤ f(x1)} is bounded; (ii) In some
neighborhood N of L, f is differentiable and its gradient g is Lipschitz continuous, namely,
there exists a constant L > 0 such that

‖g(x)− g(x̃)‖ ≤ L‖x− x̃ ‖, for any x, x̃ ∈ N . (2.1)

Assumption 2.1 implies that there exists a constant γ such that

‖g(x)‖ ≤ γ, for all x ∈ L. (2.2)

The stepsize αk in () is computed by carrying out certain line searches. The Wolfe line
search [21] is to find a positive stepsize αk such that

f(xk + αkdk)− f(xk) ≤ δαkgT
k dk, (2.3)

g(xk + αkdk)T dk ≥ σgT
k dk, (2.4)

where 0 < δ < σ < 1. Under Assumption 2.1 on f , we state the following result, which was
essentially obtained by Zoutendijk [23] and Wolfe [21, 22].

Lemma 2.2. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
any iterative method (), where dk is a descent direction and αk is computed by the standard
Wolfe line search. Then

∑

k≥1

(gT
k dk)2

‖dk‖2 < ∞. (2.5)

In the convergence analysis and implementation of conjugate gradient methods, the stepsize
αk is often computed by the strong Wolfe line search, namely, (2.3) and

|g(xk + αkdk)T dk| ≤ −σgT
k dk, (2.6)

where also 0 < δ < σ < 1. Dai et al [5] proved the following general convergence result for any
conjugate gradient method using the strong Wolfe line search.



A Note on the Nonlinear Conjugate Gradient Method 3

Lemma 2.3. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
any method ()–(), where dk is a descent direction and αk is computed by the strong Wolfe line
search. If

∑

k≥1

‖gk‖t

‖dk‖2 = ∞ (2.7)

for some t ∈ [0, 4], we have that
lim inf
k→∞

‖gk‖ = 0. (2.8)

3. Analyses of general conjugate gradient method

In this section, we will give a general condition on the scalar βk, which ensures the global
convergence of the nonlinear conjugate gradient method in the case of strong Wolfe line searches.
We need the following lemma.

Lemma 3.1. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
any method ()–(), where dk is a descent direction and αk is computed by the strong Wolfe line
search. If

∑

k≥1

|gT
k dk|r
‖dk‖2 = ∞ (3.1)

for some r ∈ [0, 2], the method converges in the sense that (2.8) is true.

Proof. For any r ∈ [0, 2], if |gT
k dk| > 1, then we have that |gT

k dk|r ≤ (gT
k dk)2. It follows

that
|gT

k dk|r ≤ 1 + (gT
k dk)2 (3.2)

and consequently
∑

k≥1

1
‖dk‖2 ≥

∑

k≥1

|gT
k dk|r
‖dk‖2 −

∑

k≥1

|gT
k dk|2
‖dk‖2 . (3.3)

Therefore by Lemma 2.2, (3.1) and (3.3), we know that (2.7) holds with t = 0. Due to Lemma
2.3, (2.8) is true. 2

The above lemma provides another sufficient condition ensuring the convergence of the
nonlinear conjugate gradient method. Combining Lemmas 2.3 and 3.1, we now can prove a
more general result.

Corollary 3.2. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
any method ()–(), where dk is a descent direction and αk is computed by the strong Wolfe line
search. If

∑

k≥1

‖gk‖t |gT
k dk|r

‖dk‖2 = ∞ (3.4)

for some positive constants t and r satisfying t+2r ≤ 4, the method converges in the sense that
(2.8) is true.

Proof. Assume that the statement is not true, we have by Lemma 2.3 that

∑

k≥1

‖gk‖t+2r

‖dk‖2 < ∞. (3.5)
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For any t, r > 0, if |gT
k dk| ≤ ‖gk‖2, we have that ‖gk‖t |gT

k dk|r ≤ ‖gk‖t+2r; otherwise we have
‖gk‖t |gT

k dk|r ≤ |gT
k dk| t

2+r. Therefore the following relation always holds:

‖gk‖t |gT
k dk|r ≤ ‖gk‖t+2r + |gT

k dk| t
2+r. (3.6)

By (3.4) and (3.5), we obtain
∑

k≥1

|gT
k dk| t

2+r

‖dk‖2 = ∞. (3.7)

Due to Lemma 3.1 and the fact that t
2 + r ∈ [0, 2], we see that (2.8) holds. Thus we obtain a

contradiction. This completes our proof. 2

In the following, we give a general condition on the scalar βk and show that such a condition
can ensure the global convergence of the conjugate gradient method in the case of strong Wolfe
line searches. Note that the sufficient descent condition, namely,

gT
k dk ≤ −c‖gk‖2 (3.8)

for all k ≥ 1 and some constant c > 0, is not revoked in Theorem 3.3.

Theorem 3.3. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
any method ()–(), where dk is a descent direction and αk is computed by the strong Wolfe line
search. If there exist an infinite subsequence {ki} and a positive constant c, such that the values
of βj satisfies

ki∏

j=l

|βj | ≤ c (3.9)

for any i ≥ 1 and l ≤ ki, the method converges in the sense that (2.8) is true.

Proof. For k ≥ 2, () implies that

dk + gk = βkdk−1. (3.10)

Squaring both sides of the above relation, we get that

‖dk‖2 ≤ −2gT
k dk + β2

k‖dk−1‖2. (3.11)

Using (3.11) recursively, we obtain

‖dk‖2 ≤ −2gT
k dk − 2

k∑

j=2

k∏

i=j

β2
i gT

j−1dj−1, (3.12)

which, with condition (3.9), shows that

‖dki‖2 ≤ (1 + c2)
ki∑

j=1

(−2gT
j dj). (3.13)

If
lim inf
i→∞

‖dki‖ < ∞, (3.14)

then
∑

k≥1
1

‖dk‖2 = ∞ and hence by Lemma 2.3, (2.8) holds. Otherwise, the following relation
holds

lim
i→∞

‖dki‖ = ∞. (3.15)
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In this case, it follows from (3.13) and (3.15) that

lim
i→∞

ki∑

j=1

(−gT
j dj) = ∞. (3.16)

Using relations (3.13) and (3.16) and Lemma 6 in Pu & Yu [18], we can obtain that

lim
i→∞

ki∑

j=1

−gT
j dj

‖dj‖2 = ∞. (3.17)

Therefore by Lemma 3.1, we also have (2.8). 2

4. Convergence of FR and PRP methods

In this section, we briefly discuss how to use Theorem 3.3 to obtain the global convergence
of the FR, and PRP conjugate gradient methods. First, we state the following lemma for the
FR method, whose proof can be found in Al-Baali [1].

Lemma 4.1. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the FR method (), () and (1.4). If the stepsize αk is computed by the strong Wolfe line search
(2.3) and (2.6) with σ ≤ 1/2, then for all k ≥ 1,

−2‖gk‖2 ≤ gT
k dk < 0. (4.1)

Theorem 4.2. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the FR method (), () and (1.4). If the stepsize αk is computed by the strong Wolfe line search
(2.3) and (2.6) with σ ≤ 1/2, then the method converges in the sense that (2.8) is true.

Proof. ¿From Lemma 4.1, we know that each dk is a descent direction. Assume that the
convergence relation (2.8) does not hold. Then there exists a positive constant γ such that

‖gk‖ ≥ γ, for all k. (4.2)

By the definition (1.4) of βFR
k , (2.2) and (4.2), we obtain

k∏

j=l

βFR
j =

‖gk‖2
‖gl−1‖2 ≤

γ̄2

γ2

4
= c. (4.3)

Due to Theorem 3.3, (2.8) holds. Therefore we obtain a contradiction. This completes our
proof. 2

For the PRP method, Powell [15] constructed counter-examples showing that the method
may cycle without approaching any solution point. Nevertheless, Gilbert & Nocedal [9] proved
that a modification of setting βk = max{βPRP

k , 0} results in global convergence. To give another
proof to the result by Theorem 3.3, we draw the following lemma from [9].

Lemma 4.3. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
any method ()–() with βk ≥ 0, where αk satisfies (2.3), (2.6) and gT

k+1dk+1 < 0. Denote
sk = xk+1 − xk and

Kλ
k,∆ = {i is an integer : k ≤ i ≤ k + ∆− 1, ‖si−1‖ > λ}. (4.4)



6 Y.H. DAI AND Y. YUAN

Let |Kλ
k,∆| be the number of elements of Kλ

k,∆. If (4.2) holds, then for any λ > 0, there exist an
integer ∆ and an index k0, such that for any k ≥ k0,

|Kλ
k,∆| ≤

∆
2

. (4.5)

Theorem 4.4. Suppose that x1 is a starting point for which Assumption 2.1 holds. Consider
the method ()–() with βk = max{βPRP

k , 0}, where αk satisfies (2.3), (2.6) and gT
k+1dk+1 < 0.

Then the method converges in the sense that (2.8) is true.

Proof. Assume that (4.2) holds. For

λ =
γ4

2Lγ̄3
, (4.6)

Lemma 4.3 gives an integer ∆ and an index k0 such that (4.5) holds for any k ≥ k0. It follows
that for any integers m and k ≥ k0,

|Kλ
k,m∆| ≤

m∆
2

. (4.7)

For any k ≤ i ≤ k + m∆− 1, if i /∈ Kλ
k,m∆, we have that ‖si−1‖ ≤ λ and hence by (2.1), (2.2)

and (4.2),

|βi| ≤ |βPRP
i | ≤ Lγ̄‖si−1‖

γ2
≤ γ2

2γ̄2
. (4.8)

When i ∈ Kλ
k,m∆, by (2.2) and (4.2), we have that

|βi| ≤ |βPRP
i | ≤ ‖gi‖(‖gi‖+ ‖gi−1‖)

‖gi−1‖ ≤ 2γ̄2

γ2
. (4.9)

Therefore if we pick

c =
(

2γ̄2

γ2

)max{k0,∆}
, (4.10)

for any integers m and l ≤ m∆, we can obtain from (4.7), (4.8) and (4.9) that

m∆∏

j=l

|βj | ≤ c. (4.11)

Due to Theorem 3.3, (2.8) is true. Therefore we obtain a contradiction. This completes our
proof. 2

5. Discussion

We have further studied the general conjugate gradient method using the strong Wolfe line
search and provided a condition on the scalar βk, namely, (3.9), which guarantees the global
convergence of the method in the absence of the sufficient descent condition. Using the result,
intuitive proofs have been given to the convergence of the famous FR, and PRP conjugate
gradient methods. We believe that our result will lead to a better understanding of already-
existing convergence results in the conjugate gradient field and provide a unified tool in the
convergence analysis of the conjugate gradient method.
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Let us now consider the n = 2,m = 8 example of Powell [15]. Assuming that the line
search is exact, Powell constructed a two-dimensional function such that the PRP method will
cycle near eight points, none of which is a solution point. Direct calculations show that in the
example, the limit of {β4j+i : i = 1, 2, 3, 4} with j is

−2
9 , 2, 3

4 , 6
respectively. It follows that

lim
j→∞

4∏

i=1

|β4j+i| = 2, (5.1)

which implies that condition (3.9) is not satisfied. Therefore condition (3.9) cannot be relaxed
in certain sense in ensuring the convergence of the nonlinear conjugate gradient method.
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