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Abstract

Linear systems associated with numerical methods for constrained optimization are
discussed in this paper. It is shown that the corresponding subproblems arise in most well-
known methods, no matter line search methods or trust region methods for constrained
optimization can be expressed as similar systems of linear equations. All these linear
systems can be viewed as some kinds of approximation to the linear system derived by the
Lagrange-Newton method. Some properties of these linear systems are analyzed.
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1. Introduction

General nonlinear optimization problems have the form:

min
x∈<n

f(x) (1.1)

subject to

ci(x) = 0, i = 1, 2, ...me, (1.2)
ci(x) ≥ 0, i = me + 1, ..., m, (1.3)

where m ≥ me ≥ 0 are two non-negative integers. From the Kuhn-Tucker theory, at a local
solution x∗ of (1.1)-(1.3), there exist Lagrange multipliers λi(i = 1, 2...m) such that

∇f(x∗)−
m∑

i=1

λi∇ci(x∗) = 0, (1.4)

λi ≥ 0, λici(x∗) = 0, i = me, ..., m. (1.5)

Let E = {1, 2, ..., me}, and I∗ = {i| ci(x∗) = 0, i = me, ...m} be the index set of all active
inequality constraints. The first order necessary condition (1.4)-(1.5) can be written as

∇f(x∗)−
∑

i∈E∪I∗
λi∇ci(x∗) = 0. (1.6)

Thus, when the iterates are close to a solution, inequality constraints can be treated as equality
constraints by applying the active set strategy. Therfore, for simplicity, some of the methods
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we discussed in the paper are for equality constrained problem

minx∈<n f(x) (1.7)
s. t. c(x) = 0. (1.8)

Some methods require the iterates staying in the interior of the feasible region, therefore only
inequality constraints are considered. For these methods, we can only apply to inequality
constrained problems:

minx∈<n f(x) (1.9)
s. t. c(x) ≥ 0. (1.10)

Almost all numerical methods for nonlinear optimization are iterative. For a line search
method, a search direction dk will be generated and a suitable point xk + αkdk is chosen so
that a reduction in a merit function (which is a penalty function) will be obtained. For a trust
region method, a trial step sk is computed in a trust region, and some criterion will be used to
decide whether the step sk should be accepted.

For unconstrained problem (m = me = 0), the Newton’s method is

xk+1 = xk − (∇2f(xk))−1∇f(xk), (1.11)

which has a local quadratic convergence property if the Hessian matrix is positive definite at the
solution. The Newton step d = −(∇2f(xk))−1∇f(xk) can be obtained by solving the following
linear system

(∇2f(xk))d = −∇f(xk). (1.12)

A very important class of methods for unconstrained optimization, quasi-Newton methods,
define the search direction by solving

Bkd = −∇f(xk), (1.13)

where Bk is a quasi-Newton matrix. The linear system determines the next iterate, therefore
play the essential role for the convergence rate of the method. It is well known([3]) that the
superlinear convergence of quasi-Newton methods is equavalent to

lim
k→∞

‖(Bk −∇2f(xk))dk‖
‖dk‖ = 0. (1.14)

For constrained optimization problems, the search directions or the trial steps are computed
by solving some subproblems. These subproblems are some kinds of approximation to the
orginal optimization problem. Most of these subproblems are simpler optimization problems.
For example, the quadratic subproblem of the sequential quadratic programming method for
(1.1)-(1.3) has the form

min
d∈<n

dT∇f(xk) +
1
2
dT Bkd (1.15)

s. t. ci(xk) + dT∇ci(xk) = 0, i = 1, ...,me; (1.16)
ci(xk) + dT∇ci(xk) ≥ 0, i = me + 1, ..., m, (1.17)

where Bk is updated from iteration to iteration and is an approximation to the Hessian matrix
of the Lagrange function. The first order necessary conditions for the above subproblem are

∇f(xk) + Bkdk =
m∑

i=1

λi∇ci(xk) (1.18)
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where λi(i = 1, ..., m) are the Lagrange multipliers satisfying

λi ≥ 0, i = me + 1, ..., m, (1.19)
λi(ci(xk) + dT

k∇ci(xk)) = 0 i = me + 1, ..., m. (1.20)

Except the complementary condition (1.20), the search direction dk is defined by the linear
system (1.18). In general, subproblems for constrained optimization use quadratic models,
implying that their first order conditions will be linear systems. Therefore for most numerical
methods, the essential part that defines the search direction or the trial step depends on some
linear systems. The main aim of this paper is to expose the corresponding such linear systems
for various methods.

For simplicity, throughout this paper, we use the following notations:

g(x) = ∇f(x), (1.21)

A(x) = ∇c(x)T = [∇c1(x),∇c2(x), ...,∇cm(x)], (1.22)

gk = g(xk), ck = c(xk) and Ak = A(xk). We also use the notation

W (x, λ) = ∇2f(x)−
m∑

i=1

(λ)i∇2ci(x) (1.23)

to denote the Hessian matrix of the Lagrange function

L(x, λ) = f(x)− λT c(x). (1.24)

2. Linear Systems Associated with Subproblems

In this section, we give a unified view to different methods, namely we try to write down the
determining linear systems for various methods, even though the explicit descriptions of these
algorithms are in the form of solving minimization subproblems.

2.1. Lagrange-Newton Step

Consider equality constrained problems. Based on the Kuhn-Tucker theory, a solution of x∗

of the constrained optimization problem and its corresponding Lagrange multiplier λ∗ consist
a saddle point of the Lagrange function L(x, λ). Namely, (x∗, λ∗) is a solution of the following
system:

∇xL(x, λ) = ∇f(x)−A(x)λ = 0, (2.1)
∇λL(x, λ) = c(x) = 0. (2.2)

Let xk be the current iterate point, and λk be an approximate Lagrange multiplier. The
Newton step for the above nonlinear equations is

[
W (xk, λk) −Ak

−AT
k 0

](
d
η

)
=

(−gk

ck

)
, (2.3)

where W (xk, λk) is defined by (1.23).
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2.2. SQP step

For the sequential quadratic programming(SQP) method, when there are only equality
constraints, the subproblem (1.15)-(1.16) can be expressed as

min gT
k d +

1
2
dT Bkd (2.4)

subject to
ck + AT

k d = 0, (2.5)

Therefore, if we denote the multipliers of the QP problem (2.4)-(2.5) by η, the equality con-
strained QP is equivalent to the following linear system:

[
Bk −Ak

−AT
k 0

](
d
η

)
=

(−gk

ck

)
. (2.6)

Hence we can see that the linear system obtained from the SQP method is that same as that
of the Lagrange-Newton method if the quasi-Newton matrix is the exact Hessian matrix of the
Lagrange function at xk.

2.3. Courant Penalty function

Consider the Courant penalty function ([4])

P (x) = f(x) +
1
2
σ‖c(x)‖22. (2.7)

At a minimizer of the Courant penalty function, the equality

g(x) + σA(x)c(x) = 0 (2.8)

should hold. The Newton’s method for the above nonlinear equation would give
[
∇2f(xk) + σA(xk)A(xk)T + σ

m∑

i=1

ci(xk)∇2ci(xk)

]
d = −[gk + σAkck]. (2.9)

Define
σ[AT

k d + ck] = −η, (2.10)

we obtain
[

W (xk,−σck) −Ak

−AT
k − 1

σ I

](
d
η

)
=

(−gk

ck

)
. (2.11)

2.4. Augmented Lagrange function

The augmented Lagrange function is

P (x) = f(x)− λT c(x) +
1
2
σ‖c(x)‖22, (2.12)

where λ ∈ <m is the Lagrange multiplier and σ > 0 is the penalty parameter. The condition
for a stationary point of the augmented Lagrange function is

g(x)−A(x)λ + σA(x)c(x) = 0. (2.13)
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Applying Newton’s method gives

[∇2f(xk) + σA(xk)A(xk)T +
m∑

i=1

[σci(xk)− (λ)i]∇2ci(xk)]d = −[gk + Ak(σck − λ)]. (2.14)

Using relation (2.10), we can rewrite the above equation as
[

W (xk, λ− σck) −Ak

−AT
k − 1

σ I

](
d
η

)
=

(−gk + Akλ
ck

)
. (2.15)

2.5. Inverse barrier function

The inverse barrier function is used for inequality constrained problem, and it has the form:

f(x) +
1
σ

m∑

i=1

1
ci(x)

. (2.16)

A minimizer of the inverse barrier function satisfy the following condition

g(x)− 1
σ

m∑

i=1

1
c2
i (x)

∇ci(x) = 0, (2.17)

which can be written as
g(x)− 1

σ
A(x)D(x)−3c(x) = 0, (2.18)

where D(x) is defined by (2.25).
The Newton step for (2.17) is

[
∇2f(xk) + 2

1
σ

AkD(xk)−3AT
k −

1
σ

m∑

i=1

1
c2
i (xk)

∇2ci(xk)

]
d = −gk +

1
σ

AkD(xk)−3ck. (2.19)

Define
1
σ

D(xk)−3(2AT
k d− ck) = −η, (2.20)

the above system reduced to
[

W (xk, 1
σ D(xk)−2ck) −Ak

−AT
k − 1

2σD(xk)3

](
d
η

)
=

( −gk

− 1
2ck

)
. (2.21)

Please notice that the second term in the right hand side has the different sign from the
“standard” system (2.3).

2.6. Log-barrier function

The log-barrier function is very similar to the inverse barrier function, and it is given by:

f(x)− 1
σ

m∑

i=1

log(ci(x)). (2.22)

The stationary condition for the log-barrier function is
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g(x)− 1
σ

m∑

i=1

1
ci(x)

∇ci(x) = 0, (2.23)

which can be written as
g(x)− 1

σ
A(x)D(x)−2c(x) = 0, (2.24)

where D(x) is a diagonal matrix whose entries are ci(x), namely

D(x) = Diag(c1(x), c2(x), ..., cm(x)). (2.25)

The Newton step for (2.23) is
[
∇2f(xk) +

1
σ

AkD(xk)−2AT
k −

1
σ

m∑

i=1

1
ci(xk)

∇2ci(xk)

]
d = −gk +

1
σ

AkD(xk)−2ck (2.26)

Define
1
σ

D(xk)−2(AT
k d− ck) = −η (2.27)

the above system reduced to
[

W (xk, 1
σ D(xk)−2ck) −Ak

−AT
k −σD(xk)2

](
d
η

)
=

(−gk

−ck

)
. (2.28)

Again, as in the inverse barrier function, here the second term in the right hand side also has
the different sign from the “standard” system (2.3).

2.7. A transformed log-barrier function method

Vanderbei and Shanno[9] transforms the inequality constrained problem (1.9)-(1.10) into

min
x∈<n

f(x) (2.29)

s.t. c(x)− y = 0 (2.30)
y ≥ 0, (2.31)

by adding the slack variables y ∈ <m. Using the log-barrier penalty to the inequality constraints
(2.31) for the above problem, we obtain that

min
x∈<n

f(x)− 1
σ

m∑

i=1

log(yi) (2.32)

s.t. c(x)− y = 0. (2.33)

The first order conditions for the above problem can be written as

g(x)−A(x)λ = 0, (2.34)

− 1
σ

1
yi

+ λi = 0, i = 1, ..., m, (2.35)

c(x)− y = 0. (2.36)
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Replacing (2.35) by yi − σ−1 1
λi

= 0, we give the modified form of the first order conditions:



g(x)−A(x)λ
y − σ−1Λ−1e
−c(x) + y


 = 0, (2.37)

where Λ is the diagonal matrix whose entries are the elements of vector λ, namely Λ =
Diag((λ)1, (λ)2, ..., (λk)), and e = (1, 1, ..., 1) ∈ <m is a vector with all entries being 1. The
Newton step for the above nonlinear equation is defined by




W (xk, λk) −AT
k 0

0 σ−1Λ−2
k I

−AT
k 0 I







d
η
δy


 = −




gk −Akλk

yk − σ−1Λ−1
k e

−ck + yk


 , (2.38)

where
Λk = Diag((λk)1, (λk)2, ..., (λk)m). (2.39)

It follows from relation (2.38) that
[

W (xk, λk) −AT
k

−AT
k −σ−1Λ−2

k

] [
d
η

]
=

[ −gk + Akλk

ck − σ−1Λ−1
k e

]
. (2.40)

In the original method of Vanderbei and Shanno[9], (2.35) is replaced by λiyi − σ−1 = 0,
the linear system becomes

[
W (xk, λk) −AT

k

−AT
k −ΓkΛ−1

k

] [
d
η

]
=

[ −gk + Akλk

ck − σ−1Λ−1
k e

]
, (2.41)

where Γk is the diagonal matrix defined by

Γk = Diag[(yk)1, (yk)2, ..., (yk)m]. (2.42)

More details can be found also in [8].

2.8. Affine Scaling interior point method

In Coleman and Li[2], an affine scaling interior point method was studied for linearly in-
equality constrained problem. Here we extend the method to the case when the constraints
are general nonlinear functions. The subproblem of the affine scaling interior point method
can be derived by considering the following first order necessary conditions of the constrained
optimization problem:

g(x)−A(x)λ = 0, (2.43)
−D(x)λ = 0, (2.44)

where the primal and dual feasibility constraints are ignored as interior point methods always
keep the iterate points in the feasible region. The Newton step for (2.43)-(2.44) is

[
W (xk, λk) −Ak

−ΛkAT
k −D(xk)

](
d
η

)
=

(−gk + Akλk

Dkλk

)
, (2.45)

where Λk is defined by (2.39). If Λk is nonsingular (which is the case if the approximate
Lagrange multipliers λk > 0), (2.45) can be written as

[
W (xk, λk) −Ak

−AT
k −Λ−1

k D(xk)

] (
d
η

)
=

(−gk + Akλk

ck

)
. (2.46)
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Because the Newton step obtained in this way may not be a descent direction, [2] suggests that
Λk be replaced by |Λk|, which is defined by Diag(|(λk)1|, |(λk)2|, ..., |(λk)m|) in (2.45). The
modified Newton step d, which satisfies the following system

[
W (xk, λk) −Ak

−|Λk|AT
k −D(xk)

](
d
η

)
=

(−gk + Akλk

Dkλk

)
, (2.47)

is also a stationary point of the augmented quadratic function

ψ(d) = gT
k d +

1
2
dT W (xk, λk)d +

1
2
dT AD−1

k |Λk|AT
k d. (2.48)

Thus a trust region subproblem can be defined by

mind∈<n gT
k d +

1
2
dT W (xk, λk)d +

1
2
dT AD−1

k |Λk|AT
k d (2.49)

s. t. ‖(d;D− 1
2

k AT
k d)‖ ≤ ∆k. (2.50)

Let τ ≥ 0 be the Lagrange multiplier of the above subproblem, it follows that

gk + W (xk, λk)d + AD−1
k |Λk|AT

k d + τ(I + AkD−1
k AT

k )d = 0, (2.51)

τ(∆k − ‖(d; D− 1
2

k AT
k d)‖) = 0. (2.52)

Defining D−1
k (|Λk|AT

k d + τAT
k d) + λk = −η, (2.51) can be reduced to

[
W (xk, λk) + τI −Ak

−|Λk|AT
k − τAT

k −D(xk)

](
d
η

)
=

(−gk + Akλk

Dkλk

)
, (2.53)

which can be written as
[

W (xk, λk) + τI −Ak

−AT
k −(|Λk|+ τI)−1D(xk)

](
d
η

)
=

( −gk + Akλk

(|Λk|+ τI)−1Λkck

)
, (2.54)

if (|Λk|+ τI) is nonsingular.

2.9. CDT subproblem

The CDT subproblem for equality constrained optimization is as follows

min gT
k d +

1
2
dT Bkd (2.55)

subject to

‖ck + AT
k d‖22 ≤ ξ2

k, (2.56)
‖d‖2 ≤ ∆k, (2.57)

where ξk is a parameter between min‖d‖≤∆k
‖ck +AT

k d‖ and ‖ck‖ (for example, see [1] and [7]).
The solution dk of the CDT subproblem (2.55)-(2.57) would satisfy

Bkdk + gk + τdk + µAk(AT
k dk + c) = 0, (2.58)

τ(∆k − ‖dk‖) = 0, (2.59)
µ(ξ2

k − ‖ck + AT
k d‖22) = 0, (2.60)
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for some τ ≥ 0 and µ ≥ 0. Define η = −µ(AT
k d + c), we can see that

[
Bk + τI −Ak

−µAT
k −I

](
d
η

)
=

(−gk

µck

)
. (2.61)

If µ > 0, the above equation can be written as
[

Bk + τI −Ak

−AT
k − 1

µI

](
d
η

)
=

(−gk

ck

)
. (2.62)

2.10. Reduced Hessian Method

The two sided reduced Hessian method computes the search direction dk by decompositing
it into the null space and the range space of Ak. Assume that the QR factorization of Ak is as
follows

Ak = Qk

[
Rk

0

]
= [Yk, Zk]

[
Rk

0

]
, (2.63)

then the search direction d can be expressed as

dk = Ykyk + Zkzk. (2.64)

The two sided reduced Hessian method use the reduced Hessian ZT
k W (xk, λk)Zk or its approx-

imation. The steps in the reduced spaces can be computed separately:

yk = −RT
k ck, (2.65)

zk = −(ZT
k W (xk, λk)Zk)−1gk. (2.66)

One advantage of using two sided reduced Hessian is that only (n − m) × (n − m) matrices
are used, which is very favorable when both n and m are very large while n −m is relatively
small. Detailed studies on reduced Hessian methods can be found in [6]. For some extremely
large problems, using the full Hessian is nearly impossible due to storage and computational
cost. And there are many practical problems that the variables are required to stay in a small
dimensional subspace though the problem size is quite large. It follows (2.64)-(2.66) that

ZT
k W (xk, λk)dk = ZT

k W (xk, λk)(YkY T
k dk + ZkZT

k dk)
= −ZT

k W (xk, λk)(AT
k )+ck − ZT

k gk. (2.67)

The above relation indicates that there exists a vector η ∈ <m such that

W (xk, λk)dk = −W (xk, λk)(AT
k )+ck − gk + Akη. (2.68)

Thus, we can see the search direction obtained by the two sided reduced Hessian method satisfies
the following linear system

[
W (xk, λk) −Ak

−AT
k 0

] (
d
η

)
=

(−gk −W (xk, λk)(AT
k )+ck

ck

)
. (2.69)

3. Some Properties of the Linear Systems

From the previous section, we can easily see that all the linear systems corresponding the
different methods are similar in form, and they can be express as

[
W (xk, λk) + Tk −Ak

−AT
k Sk

](
d
η

)
=

(−gk + ε̂k

ck + ε̄k

)
, (3.1)
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where Tk ∈ <n×n is a symmetric matrix, Sk ∈ <m×m is a diagonal matrix, ε̂k ∈ <n and ε̄k ∈ <m

are two vectors. Therefore we can view all these linear systems as perturbated system from the
equation (2.3).

If xk is close to a solution where the second order sufficient condition holds and if λk is close
to the lagrange multiplier at the solution, we can show that

ZT
k W (xkλk)Zk (3.2)

is positive definite. Therefore throughout this section we use this assumption.

Assumption 3.1

1. The matrix ZkTW (xkλk)Zk is positive definite for all k.

2. Ak is full column rank, namely Rank(Ak) = m for all k.

The following result is well known (for example, see Fletcher[4]).

Theorem 3.2 Under the Assumption 3.1, the matrix
[

W (xk, λk) −Ak

−AT
k 0

]
(3.3)

is nonsingular.

We found in the previous section, the perturbation matrix Sk is always a negative semi-
definite matrix. Actually in all the cases, Sk is a diagonal matrix, whose diagonal elements are
non-positive.

Before presenting our next theorem, we need to establish the following lemma:

Lemma 3.3 Assume that R ∈ <m×m is an nonsingular matrix, that T ∈ <m×m is symmtric
and positive semi-definite S ∈ <m×m is symmetric and negative semi-definite, then the matrix

[
T R

RT S

]
(3.4)

is nonsingular, and it has m positive eigenvalues and m negative eigenvalues.

Proof. Choose a positive number t such that t2 > ‖S‖2. Consider all the vectors in <2m in
the following form:

z =
[

ty
1
t Ry

]
, ∀y ∈ <m. (3.5)

It is easy to see that

zT

[
T R

RT S

]
z = t2yT Ty + 2‖Ry‖2 +

1
t2

yT RT SRy > 0. (3.6)

for any nonzero vector y ∈ <m. Because the vectors defined by (3.5) span an m-dimensional
subspace in <2m, it follows from (3.6) that the matrix (3.4) has at least m positive eigenvalues.
Applying the same arguments to matrix

[ −T −R
−RT −S

]
, (3.7)

we can see that matrix (3.4) has at least m negative eigenvalues. 2

The following theorem implies that the nonsingularity of the coefficient matrix of the linear
systems given in the previous section.
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Theorem 3.4 Assume that Rank(Ak) = m, that Bk ∈ <n×n is symmetric and positive semi-
definite and that ZT

k BkZk is positive definite, then for any symmetric and negative semidefinite
matrix Sk ∈ <m×m the matrix [

Bk −Ak

−AT
k Sk

]
(3.8)

is nonsingular. Moreover, the matrix (3.8) has exactly n positive eigenvalues and m negative
eigenvalues.

Proof. Let the QR factorization of Ak is given by (2.63). Define the following orthogonal
matrix

Q̄k =
[

Qk 0
0 I

]
∈ <(n+m)×(n+m). (3.9)

It is easy to see that

Q̄T
k

[
Bk −Ak

−AT
k Sk

]
Q̄k =




Y T
k BkYk Y T

k BkZk −Rk

ZT
k BkYk ZT

k BkZk 0
−RT

k 0 Sk




= P̂k




Y T
k BkYk − Y T

k BkZk(ZT
k BkZk)−1ZT

k BkYk 0 −Rk

0 ZT
k BkZk 0

−RT
k 0 Sk


 P̂T

k , (3.10)

where

P̂k =




I Y T
k BkZk(ZT

k BkZk)−1 0
0 I 0
0 0 I


 (3.11)

is a nonsingular matrix. Because Bk is positive semi-definite and ZT
k BkZk is positive definite,

it is obvious that
Y T

k BkYk − Y T
k BkZk(ZT

k BkZk)−1ZT
k BkYk (3.12)

is also positive semi-definite. It follows from (3.10), the positive semi-definiteness of (3.12), the
positive definiteness of ZT

k BkZk and Lemma 3.3 that the matrix (3.8) has exactly n positive
eigenvalues and m negative eigenvalues. 2

Unfortunately the condition that Bk is positive semi-definite can not be relaxed. For exam-
ple, in the linear system derived from the CDT subproblem, the coefficient matrix

[
Bk + τI −Ak

−AT
k − 1

µI

]
(3.13)

has the same inertia (see [5]) as
[

Bk + τI + µAkAT
k 0

0 − 1
µI

]
. (3.14)

And it is showed by Yuan[10] that

Bk + τI + µAkAT
k (3.15)

can have one negative eigenvalue even when the second order sufficient condition holds. This
implies that (3.14) can have m+1 negative eigenvalue, which means that (3.13) can have more
than m negative eigenvalue if Bk is not positive semidefinite.
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If Sk = 0 in (3.1), the linear system is equivalent to
[

W (xk, λk) + Tk −Ak

−AT
k 0

] (
d

η − λ̂

)
=

(
−gk + AT

k λ̂ + ε̂k

ck + ε̄k

)
, (3.16)

for any λ̂ ∈ <m. This shows that for linear systems that have a zero Sk, adding any vector in
the range space of Ak does not alter the solution d. For example, it is convenient to choose λ̂
that minimizes ‖gk − Akλ‖ so that the right hand side of the linear system (3.16) is bounded
above by O(‖xk − x∗‖) if xk is close to a solution x∗ and if ‖ε̂k‖+ ‖ε̄k‖ = O(‖xk − x∗‖).

If Sk 6= 0, it is normally a diagonal matrix whose diagonal elements are all negative. In that
case, if we want to have gk−Akλ̂ instead of gk in the right hand of (3.1), the linear system can
be written as

[
W (xk, λk) + Tk −Ak

−AT
k Sk

] (
d

η − λ̂

)
=

(−gk + AT
k λ̂ + ε̂k

ck − Skλ̂ + ε̄k

)
. (3.17)

A reasonable choice for λ̂ is that it minimizes

‖gk −AT
k λ‖+ ‖ck − Skλ‖. (3.18)

Assuming that ‖ε̂k‖+ ‖ε̄k‖ → 0, we should have that Sk → 0 in order to ensure that the right
hand side of (3.17). However, if ‖ε̄k‖ → 0 and if ε̂k = Akλk + o(1), the right hand side of
the linear system (3.1) converges to 0 provided λk is a good approximation to the Lagrange
multiplier.

4. Update Linear Systems

In most methods, the Hessian of the Lagrange function will not be computed. Therefore,
the linear system actually solved will be in the form

[
Bk −Ak

−AT
k 0

](
d
η

)
=

(
uk

vk

)
, (4.1)

or [
Bk + τI −Ak

−AT
k Σk

](
d
η

)
=

(
uk

vk

)
, (4.2)

where τ ≥ 0 and Σk = Diag[(σk)1, (σk)2, ..., (σk)m] with (σk)i < 0 for all i. Bk is a quasi-
Newton matrix which is updated by either a rank-1 or a rank-2 formular. For example, the
symmetric rank 1 update is given by

Bk+1 = Bk +
(yk −Bksk)(yk −Bksk)

(yk −Bksk)T sk
, (4.3)

where

sk = xk+1 − xk, (4.4)

yk = gk+1 − gk −
m∑

i=1

(λk)i[∇ci(xk+1)−∇ci(xk)]. (4.5)

Here we only consider (4.1). Denote

Hk =
[

Bk −Ak

−AT
k 0

]
. (4.6)
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Suppose that Bk+1 is obtained by adding a rank-2 matrix to Bk. then Hk+1 is a rank-2(m+1)
changes from Hk. Namely we have

Hk+1 −Hk =
[

Bk+1 −Bk 0
0 0

]
+

m∑

i=1

[
ŷkeT

i + eiŷ
T
k

]
, (4.7)

where

ŷk =
(

0
∇ci(xk+1)−∇ci(xk)

)
. (4.8)

Since the linear system (4.1) has to be solved in every iteration of an optimization algorithm,
it is very natural for us to be very interested in the following question.

Problem 4.1 If the linear system (4.1) has already been solved in the iteration k, how to solve
the similar equation quickly for the next iteration using the rank-2(m+1) update relation (4.7)?

In practical implementations, we may need to use some kind of pre-conditioning technique
to solve (4.1). Namely we construct a matrix Pk ∈ <(n+m)×(n+m) such that Pk is some kind of
approximation to H−1

k . Therefore it is very desirable to have a good answer to the following
question.

Problem 4.2 Suppose that we have a pre-conditioner matrix Pk, how can we quickly obtain a
suitable pre-conditioner matrix Pk+1 using relation (4.7)?

One paticular answer to the above question is to use the Sherman-Morrison-Woodbury
formula:

(A + UV T )−1 = A−1 −A−1U(I + V T A−1U)−1V T A−1. (4.9)

Since Pk ≈ H−1
k , it is reasonable to choose Pk+1 by

P−1
k+1 = P−1

k + [Hk+1 −Hk]. (4.10)

Because Hk+1 is a rank-2(m+1) update from Hk, using the above relation we can apply the
Sherman-Morrison-Woodbury formula to update Pk+1 from Pk. However, it would be better if
we can find an even better solution than this approach.

4. Conclusion

In this paper, we have discussed some linear systems associated with numerical methods
for constrained optimization. It is interesting to study the properties of these linear systems,
and try to construct new methods by proposing different linear systems which have similar
structures. Indeed, if a search direction(in a line search type method) or a trial step (in a trust
region method) is a superlinear convergence step, it must be some kind of approximation to
the SQP step. Therefore, this step should satisfy (2.6) approximately. Thus, we may consider
general methods that have the following form:

([
Bk −Ak

−AT
k 0

]
+ Ek

) (
d
η

)
=

(−gk + Akλk

ck

)
. (5.1)

The matrix Ek should have the following properties: 1. it should converge to zero when the
iterate points converge to a solution; 2. the linear system (5.1) should be better conditioned
than the original system (2.6); 3. the solution d obtained from (5.1) should be easily verified
to be an descent direction of certain merit function. We believe that to construct new efficient
methods by proposing different Ek is an interesting subject to study.
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[3] J.E. Dennis and J.J. Moré, Quasi-Newton method, motivation and theory, SIAM Review
19(1977) 46-89.

[4] R. Fletcher, Practical Methods of Optimization, 2nd. Ed. (John Wiley and Sons, Chichester,
1987).

[5] G.H. Golub and C.F. Van Loan, Matrix Computations, Third Ed., (Johns Hopkins, Balti-
more and London, 1996).

[6] J. Nocedal and M.L. Overton, Projected Hessian update algorithms for nonlinear con-
strained optimization, SIAM J. Numer. Anal. 22(1985) 821-850.

[7] M.J.D. Powell and Y. Yuan, A trust region algorithm for equality constrained optimization,
Math. Prog. 49(1991) 189-211.

[8] D.F. Shanno and R.J. Vanderbei, Interior-point methods for nonconvex nonlinear program-
ming: orderings and higher-order methods, Math. Prog. 87(2000) 303-316.

[9] R.J. Vanderbei and D.F. Shanno, An interior point algorithm for nonconvex nonlinear
programming, Comput. Optim. Appl. 13(1999) 231-252.

[10] Y. Yuan, On a subproblem of trust region algorithms for constrained optimization, Math.
Prog. 47(1990) 53-63.


