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1. Introduction

Consider the nonlinear program with general nonlinear equality constraints

min f(x) (1.1)

s.t. hj(x) = 0, j ∈ E , (1.2)

where x ∈ <n, E = {1, 2, . . . , m} (m ≤ n), f , hj (j ∈ E) are twice continuously differentiable
real-valued functions defined on <n. Sequential quadratic programming (SQP) approach for
problem (1.1)–(1.2) is iterative. Suppose that xk is the current iterate, SQP solves the quadratic
programming (QP) problem

min (gk)T d + (1/2)dT Bkd (1.3)

s.t. hk
j + (ak

j )
T d = 0, j ∈ E , (1.4)

where gk = ∇f(xk), hk
j = hj(xk), ak

j = ∇hj(xk), Bk ∈ <n×n is the Lagrangian Hessian at xk

or its approximation. Let dk ∈ <n be a solution of program (1.3)–(1.4). The new iterate is
generated by a line search procedure

xk+1 = xk + αkd
k, (1.5)

where the step-length αk ∈ (0, 1] is generally selected to satisfy a sufficient descent condition on
a penalty function with an appropriately picked penalty parameter. Assuming that ak

j , j ∈ E ,
are linearly independent (thus Ak = [ak

1 . . . ak
m] is of full column rank) and Bk is positive

definite (possibly in the null space of AT
k ∈ <m×n), the SQP method is known to be converging

to the Karush-Kuhn-Tucker (KKT) point globally. If Bk is selected suitably, the rapid local
convergence can be obtained, for example see [22, 26].

It has been observed in various numerical experiments on standard test problems that meth-
ods using a penalty function, including SQP methods and interior-point methods, can be affected
by the “inappropriate” selection of the penalty parameter. Although many SQP methods and
interior-point methods update the penalty parameter adaptively, the selection for initial value
of the penalty parameter is often arbitrary and heuristic, sometimes it is not credible and can
cause some difficulties in solving the problems numerically.

In order to avoid the practical problems associated with the setting of the penalty parameter,
Fletcher and Leyffer [13] introduced the filter technique, a new strategy for globalizing methods
for nonlinear programming, and showed numerically that an SQP trust-region algorithm with
the technique performs very promising. Fletcher, Leyffer and Toint [14] proved the global
convergence of a filter-SQP algorithm. After that, many globally convergent filter methods have
been presented, such as Chin and Fletcher [9], Fletcher, Gould, Leyffer, Toint and Wächter [12],
Ribeiro, Karas, Gonzaga [24], Ulbrich, Ulbrich and Vicente [28], Wächter and Biegler [29, 30],
and so on. Some of them have also been proved to be locally superlinearly convergent.

Very recently, Gould and Toint [17] introduced a new method for solving equality constrained
nonlinear optimization problems. The method did not use a penalty function, a barrier or a
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filter, and it was proved to be globally convergent. Ulbrich and Ulbrich [27] proposed and
analyzed a penalty-function-free nonmonotone trust-region method. Numerical experiments
on CUTE problems indicated that both methods performed well. Yamashita and Yabe [32]
also presented a trust-region SQP method without a penalty function or a filter for solving
constrained optimization with nonlinear equality and nonnegativity constraints. These methods
used a trust-region procedure to generate new iterates and solved several different subproblems
for coping with the nonlinearities of the objective function and the constraints.

We present a sequential quadratic programming algorithm without a penalty function or a
filter for solving the equality constrained optimization problem (1.1)–(1.2) in this paper. The
algorithm generates new iterates by line search procedures. In each iteration, the linearized con-
straints of the quadratic programming are relaxed to satisfy two mild conditions, the step-size
is selected such that either the value of the objective function or the measure of the constraint
violations is sufficiently reduced. As a result, our method has two nice properties. Firstly, we
do not need to assume the boundedness of the iterative sequence. Secondly, we do not need any
restoration phase which is necessary for filter methods. Under mild assumptions, we prove that
the algorithm will find a KKT point, or a Fritz-John (FJ) point of problem (1.1)–(1.2), or an
infeasible stationary point of the problem which is a stationary point for minimizing the `2 norm
of the constraint violations. By controlling the exactness of the linearized constraints and in-
troducing a second-order correction technique, without requiring linear independence constraint
qualification, the algorithm is shown to be locally superlinearly convergent. The preliminary
numerical results show that the algorithm is robust and efficient when solving a set of small-
and medium-size problems from the CUTE collection [3].

The algorithm is not a straight derivation of Gould and Toint [17], Ulbrich and Ulbrich [27],
and Yamashita and Yabe [32]. One of our main contributions in this paper is to develop a set
of line search procedures only depending on the decrement of either the value of the objective
function or the `2 measure of the constraint violations, so that the presented SQP is still globally
convergent and locally superlinearly convergent. These line search procedures are not restrictive
and play a very important role for the global and local convergence analysis, some of them are
inspired by Chin and Fletcher [9] and Fletcher, Leyffer and Toint [14]. Since the algorithm does
neither use a penalty function nor a filter, it is not necessary to assume the boundedness of
the iterative sequence as usual (see Solodov [25] for a recent discussion on this assumption),
and instead we suppose that a level set on a measure of constraint residuals is bounded and
the objective function is bounded below, which are similar to the assumptions in unconstrained
optimization.

This paper is organized as follows. In Section 2, we firstly describe a QP with relaxed lin-
earized constraints. Two mild conditions are presented. After that, we present our algorithm
and then show that the algorithm is well-defined. The global convergence results on the algo-
rithm are proved in Section 3. In Section 4, we show that a superlinear/quadratic step can be
obtained by controlling the exactness of the linearized constraints. In order to circumvent the
so-called Maratos effect, a second-order correction technique is introduced in the algorithm, and
then we prove that the full superlinear step will be accepted. The algorithm is implemented in
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Section 5, and preliminary numerical results for some small- and medium-size problems from
the CUTE collection [3] are reported.

Throughout the paper, the lower letters represent the vectors, and the capital letters rep-
resent the matrices. The superscript and subscript of a vector stand for the corresponding
iteration and the corresponding component, respectively. The subscript and superscript of a
matrix respectively stand for the corresponding iteration and the corresponding column of the
matrix. The expression αk = O(βk) means that there exists a constant M independent of k such
that αk ≤ Mβk, and αk = o(βk) indicates that limβk→0 αk/βk = 0. If it is not specified, ‖ · ‖ is
the Euclidean norm. For simplicity, we also use the notations: h(x) = (h1(x) . . . hm(x))T ,
hk = h(xk), h∗ = h(x∗), hk

j = hj(xk), fk = f(xk), fk+1 = f(xk+1), vk = v(xk), vk+1 = v(xk+1),
g∗ = ∇f(x∗), A(x) = [∇h1(x) . . .∇hm(x)], A∗ = A(x∗), and hJk

= (hj(x), j ∈ Jk)T ∈ <|Jk|,
AJk

= [∇hj(xk), j ∈ Jk] ∈ <n×|Jk|, AJ ∗ = [∇hj(x∗), j ∈ J ∗] ∈ <n×|J ∗|, where Jk and J ∗ are
two index sets, |Jk| and |J ∗| are their cardinalities.

2. The algorithm

We present our algorithm and prove that it is well-defined in this section.

2.1. The QP subproblem with relaxed linearized constraints. It is well known that,
even if the solution x∗ of the original problem (1.1)–(1.2) is regular (that is, the linear indepen-
dence constraint qualification (LICQ) and the second-order sufficient conditions (SOSC) hold
at the solution), for any iterate xk far from x∗, the vectors ak

j , j ∈ E , are still possibly linearly
dependent. In the interior-point algorithmic framework, the matrix [ak

j , j ∈ E ] may be asymp-
totically degenerate. The linear dependence may result in that the subproblem (1.3)–(1.4) is
infeasible at xk, while the asymptotical degeneracy may lead to the solution of the subproblem
being asymptotically too large in norm. These pitfalls can finally cause the failure of many
methods for nonlinear programming (see, for example, [7, 22]). So far, there has been already
many works such as [1, 4, 5, 8, 19, 20, 33], whose contributions consist in relaxing the constraints
of the QP subproblem (1.3)–(1.4). They have been proved to be able to alleviate or remove the
symptom, and improve the convergence properties of the SQP and interior-point methods.

Suppose that xk is the current iterate, Liu and Yuan [21] proposes to solve the quadratic
programming subproblem

min (gk)T d + (1/2)dT Bkd (2.1)

s.t. AT
k d = AT

k dk
p, (2.2)

where dk
p ∈ <n approximately minimizes ‖hk + AT

k d‖ and satisfies two prescribed conditions:

Condition (a). ‖dk
p‖ ≤ κ1‖Akh

k‖, where κ1 > 0 is a constant;

Condition (b). If ‖hk‖ 6= 0, ‖hk‖ − ‖hk + AT
k dk

p‖ ≥ κ2‖Akh
k‖2/‖hk‖, where κ2 ∈ (0, 1) is

a constant.

It has been shown by [15, 16, 21] that the program (2.1)–(2.2) has a unique solution provided
that Bk is positive definite in the null space of AT

k . Let dk be the solution. Since hk + AT
k dk =
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hk + AT
k dk

p, then

‖hk + AT
k dk‖ ≤ (1− κ2‖Akh

k‖2/‖hk‖2)‖hk‖,

which shows that the constraints in (1.4) have been relaxed.

To relax the linearized constraints by a null-space approach is not a new idea, [5, 22, 23]
have used similar techniques to improve the performances of trust-region methods for equality
constrained optimization. The above conditions can be guaranteed by the following result.

Lemma 2.1 Assume ‖hk‖ 6= 0. Let dk
p = −αc

kAkh
k, where αc

k = argminα∈(0,1]‖hk−αAT
k Akh

k‖.
Then there holds

‖hk‖ − ‖hk + AT
k dk

p‖ ≥ (1/2)min{1, θk}‖Akh
k‖2/‖hk‖, (2.3)

where θk = ‖Akh
k‖2/‖AT

k Akh
k‖2.

Proof. This result can be proved by a technique similar to Lemma 2.1 of Liu and Yuan [21].

Under the assumptions in Section 3, we have that ‖AkA
T
k ‖ ≤ κ for some constant κ ≥ 1.

Thus, θk ≥ 1/‖AkA
T
k ‖ ≥ 1/κ. Then Condition (b) follows immediately from (2.3). Since

‖dk
p‖ ≤ αc

k‖Akh
k‖ ≤ ‖Akh

k‖, Condition (a) holds naturally.

2.2. Our algorithm. Let L(x, λ) = f(x) + λT h(x). The KKT conditions of problem (1.1)–
(1.2) are as follows:

∇xL(x∗, λ∗) = g∗ + A∗λ∗ = 0, (2.4)

h∗ = 0, (2.5)

where x∗ ∈ <n is a KKT point and λ∗ ∈ <m is the associated Lagrangian multiplier vector.

For every x ∈ <n, we define the measure function on the constraint violations

v(x) = ‖h(x)‖. (2.6)

Moreover, let φ(x; d) = ‖h(x) + A(x)T d‖ − ‖h(x)‖, where d ∈ <n.

We present our algorithm in the following:

Algorithm 2.2 (The algorithm for problem (1.1)–(1.2))

Given the initial point x0 ∈ <n, a constant σ ∈ (0, 1/2), two small constants ξ1 > 0, ξ2 > 0, and
the tolerance ε > 0. Compute g0, h0, v0, A0 and B0. Set v0

max = 0, r0 = 0.9. Let k := 0;

While max(‖∇xL(xk, λk)‖, ‖hk‖) > ε and ‖Akhk‖ > ε min(‖hk‖, 1);

Calculate dk
p approximately minimizing ‖hk + AT

k d‖ on d satisfying Conditions (a)–(b).

Solve the QP subproblem (2.1)–(2.2). Let dk be the solution.

Select the step-size αk ∈ (0, 1] as large as possible such that either both inequalities

f(xk + αkdk)− fk ≤ min{σαk(gk)T dk,−ξ1v(xk + αkdk)} (2.7)
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and

v(xk + αkdk) ≤ max{(rk + 1)/2, 0.95}vk
max if vk

max 6= 0 (2.8)

hold or the inequality

v(xk + αkdk)− vk ≤ min{σαkφ(xk; dk),−ξ2α
2
k‖dk‖2} (2.9)

is satisfied.

Set xk+1 = xk + αkdk.

If (2.9) holds at xk+1 but not xk, set vk+1
max = vk, else vk+1

max = vk
max;

Compute gk+1, hk+1, vk+1, Ak+1, and update Bk to Bk+1. If (2.9) holds, calculate rk+1 =
vk+1/vk; otherwise, rk+1 = rk. Let k := k + 1;

end (while)

The algorithm will terminate with three cases: (i) ‖∇xL(xk, λk)‖ ≤ ε and ‖hk‖ ≤ ε; (ii)
‖hk‖ < 1, and ‖Akh

k‖/‖hk‖ ≤ ε; (iii) ‖hk‖ ≥ 1, but ‖Akh
k‖ ≤ ε. If ε is small enough, by (2.4)–

(2.5), case (i) implies that xk is an approximate KKT point. The global convergence results
in Section 3 will indicate that xk is an approximate FJ point for case (ii) and an approximate
infeasible stationary point for case (iii), respectively.

For convenience of statement, we refer to the iteration as an h-type iteration if (2.9) holds, and
an f-type iteration if (2.7) and (2.8) are satisfied. Thus, the measure of the constraint violations
is decreased for an h-type iteration, and the value of the objective function is decreased for an
f-type iteration. It should be noted that there are obvious differences on the h-type iteration
and the f-type iteration between this paper and previous works [9, 14] since we are using a line
search strategy instead of a trust-region strategy.

The condition (2.8) is not restrictive. We do not calculate v0
max = v0 at the starting point

x0 but set v0
max = 0 directly. With this flexibility, even if v0 is sufficiently small, the algorithm

may still take a large step as an f-type iteration without the restriction of (2.8). Since vk
max is

only reset as an h-type iteration starts, this suggests that vk
max is still large enough and can be

reduced sufficiently. We should notice that rk+1 remains unchanged for f-type iterations. Since
an h-type iteration implies that vk+1 < vk by (2.9), one always has 0 ≤ rk < 1. Thus,

rk < (rk + 1)/2 < 1 and (rk + 1)/2 ≥ 1/2. (2.10)

Moreover,

max{(rk + 1)/2, 0.95} =

{
(rk + 1)/2, if rk ≥ 0.9;
0.95, otherwise,

(2.11)

where 0.95 is a threshold for (2.8) accepting a possible larger step-size.

2.3. Well-definedness. By (2.2) and Condition (b), if AT
k dk = 0, then Akh

k = 0. On the
contrary, if Akh

k = 0, by Condition (a), dk
p = 0. It follows from (2.2) that AT

k dk = 0. Thus,
AT

k dk = 0 if and only if Akh
k = 0.
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Since hj : <n → < (j ∈ E) is twice continuously differentiable, v(x) is always directionally
differentiable (for example, see Nocedal and Wright [22]). Moreover, we have the following
results:

Lemma 2.3 Let v
′
(xk; dk) be the directional derivative along dk at xk. There holds

−‖AT
k dk‖ ≤ v

′
(xk; dk) ≤ φ(xk; dk) ≤ −κ2‖Akh

k‖2/‖hk‖, (2.12)

where κ2 ∈ (0, 1) is a constant defined in Condition (b). Thus, if ‖Akh
k‖ 6= 0, then dk is a

descent direction of v(x) at xk.

Proof. Since h(x) is twice continuously differentiable on <n, by Taylor’s Theorem, for α small
enough, there exists a θ ∈ (0, α) such that

v(xk + αdk)− vk = ‖hk + αAT
k dk + (1/2)α2

m∑

j=1

(dk)T∇2hj(xk + θdk)dk‖ − ‖hk‖

= ‖hk + αAT
k dk‖ − ‖hk‖+ O(α2)

≤ α(‖hk + AT
k dk‖ − ‖hk‖) + O(α2), (2.13)

while the first equality of (2.13) implies that

v(xk + αdk)− vk ≥ −α‖AT
k dk‖ − (1/2)α2

m∑

j=1

‖(dk)T∇2hj(xk + θdk)dk‖. (2.14)

Because

v
′
(xk; dk) = lim

α↓0
(v(xk + αdk)− vk)/α,

we complete the proof by (2.13), (2.14) and Condition (b).

Lemma 2.4 If Akh
k = 0 and there exists a positive constant γ such that dT Bkd ≥ γ‖d‖2 for

all d ∈ {d : AT
k d = 0}, then

(gk)T dk ≤ −γ‖dk‖2. (2.15)

Proof. If Akh
k = 0, then AT

k dk = 0. Since dk satisfies equation

gk + Bkd
k + Akλ

k = 0, (2.16)

where λk ∈ <m is the multiplier vector, left-multiplying (dk)T on the two sides of (2.16), one
has

(gk)T dk + (dk)T Bkd
k = 0.

Thus, (2.15) follows from the fact that (dk)T Bkd
k ≥ γ‖dk‖2 since dT Bkd ≥ γ‖d‖2 for all d ∈

{d : AT
k d = 0}.
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Lemma 2.5 Suppose that xk is the current iterate and that the algorithm does not terminate
at xk. If there is a constant γ > 0 such that dT Bkd ≥ γ‖d‖2 for all d ∈ {d : AT

k d = 0}, then
there always exists a scalar tk ∈ (0, 1] such that either (2.9) holds or both (2.7) and (2.8) are
satisfied for all α ∈ (0, tk]. Therefore, Algorithm 2.2 is well-defined.

Proof. Since the algorithm does not terminate at xk, then we have either ‖Akh
k‖ 6= 0 or the

case where ‖Akh
k‖ = 0, vk = 0 and ‖dk‖ 6= 0 (that is, xk is not a KKT point). In what follows

we discuss these two cases respectively.

Case 1. ‖Akh
k‖ 6= 0. Then vk 6= 0. It follows from (2.12) that φ(xk; dk) < 0. Thus, there

exists a constant t̂k ∈ (0, 1] such that

min{σαφ(xk; dk),−ξ2α
2‖dk‖2} = σαφ(xk; dk) (2.17)

for all α ∈ (0, t̂k]. Due to

v(xk + αdk) = vk + αv
′
(xk; dk) + o(α)

≤ vk + αφ(xk; dk) + o(α), (2.18)

v(xk + αdk)− vk − σαφ(xk; dk) ≤ (1− σ)αφ(xk; dk) + o(α) ≤ 0 for all sufficiently small α > 0.
Hence, by (2.17), there exists a scalar tk ∈ (0, t̂k] such that (2.9) holds for all α ∈ (0, tk].

Case 2. ‖Akh
k‖ = 0, vk = 0 and ‖dk‖ 6= 0. In this case, ‖AT

k dk‖ = 0 and φ(xk; dk) = 0.
Thus, by (2.12), v

′
(xk; dk) = 0. It is obtained from (2.18) that

v(xk + αdk) = o(α). (2.19)

If vk
max 6= 0, since it is independent on α, there always exists a t̄k ∈ (0, 1] such that (2.8) holds

for all α ∈ (0, t̄k].

By Lemma 2.4, (gk)T dk ≤ −γ‖dk‖2. From this inequality, relation (2.19) and the fact that
v(xk + αdk) ≥ 0 for all α ≥ 0, we can find a small t̃k ∈ (0, t̄k] such that, for all α ∈ (0, t̃k],

min{σα(gk)T dk,−ξ1v(xk + αdk)} = σα(gk)T dk.

Since f(xk + αdk)− fk − σα(gk)T dk = (1− σ)α(gk)T dk + o(α) ≤ 0 for all sufficiently small
α > 0, there exists a scalar tk ∈ (0, t̃k] such that (2.7) and (2.8) hold for all α ∈ (0, tk].

The line search procedure (2.7) is motivated by Chin and Fletcher [9] and Fletcher, Leyffer
and Toint [14]. The following result partially reflects its role in the algorithm.

Lemma 2.6 Suppose that {xk} is the infinite sequence generated by Algorithm 2.2. If (2.7)
holds for all k, and lim infk→∞ fk > −∞, then

lim
k→∞

vk = 0. (2.20)
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Proof. If (2.7) holds for all k, then fk+1 ≤ fk and

fk+1 − fk ≤ −ξ1v
k+1. (2.21)

Since {fk} is a monotonically decreasing sequence and is bounded below, then it converges as
k →∞. Let k →∞ and take the limit on the two sides of the inequality (2.21), we derive

lim
k→∞

vk+1 = 0.

Thus, the result (2.20) follows directly.

Lemma 2.7 Suppose that {xk} is the infinite sequence generated by Algorithm 2.2. If the
objective function is bounded below, that is, lim infk→∞ fk > −∞, then there exists a constant
ν0 > 0 such that xk ∈ C for all k ≥ 0, where C = {x : v(x) ≤ ν0} is a level set of v(x).

Proof. If lim infk→∞ fk > −∞ and all iterations are f-type iterations, then by Lemma 2.6
limk→∞ vk = 0. Thus, for any given ν > 0, there is an integer k0 > 0 such that vk ≤ ν for all
k ≥ k0. Let ν0 = max{v0, v1, . . . , vk0 , ν}. Then vk ≤ ν0 for all k ≥ 0.

If all iterations are h-type iterations, by Algorithm 2.2, v1
max = v0, vk

max remains constant
for all k ≥ 1 and (2.9) holds for all k ≥ 0. If we set ν0 = v0, then vk ≤ ν0 for every k ≥ 0.

Now we consider the last possible case where a set of f-type iterations and a set of h-type
iterations appear alternately. If the algorithm starts with an h-type iteration, then we can still
set ν0 = v0 since by (2.8) and (2.9) we have that vk ≤ v0 for all k ≥ 0. Otherwise, suppose that
the first k0 iterations are f-type iterations, and after that, that there are some h-type iterations.
Then we can select ν0 = max{v0, v1, . . . , vk0} and there holds vk ≤ ν0 for all k ≥ 0. Thus,
xk ∈ C for all k ≥ 0.

3. Global convergence

We assume that the algorithm does not terminate in a finite number of iterations and an
infinite sequence {xk} is generated. Thus, ‖dk‖ 6= 0 for all k ≥ 0.

The following assumptions are based on our discussions in the previous section.

Assumption 3.1

(A) f and hj , j ∈ E, are twice continuously differentiable on <n;

(B) lim infk→∞ fk > −∞, and the level set C = {x ∈ <n : v(x) ≤ ν0} is bounded, where ν0

is the value of v(x) at the first h-type iteration, if any, and can be any given positive value if all
iterations are f-type iterations;

(C) ‖Bk‖ ≤ β for some scalar β > 0 and dT Bkd ≥ γ‖d‖2, ∀d 6= 0 such that AT
k d = 0 for

some constant γ > 0, that is, Bk is bounded above and is positive definite in the null space of
AT

k for every k.

(D) dk
p satisfies Conditions (a)–(b) for all k ≥ 0.
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Assumption 3.1 (B) can be further simplified if we impose a condition on the initial point
x0 that v0 is large enough so that the algorithm starts by an h-type iteration at x0. In this case
we can choose ν0 = v0 by the proof of Lemma 2.7. But the imposition will affect the freedom in
the choice of the initial point and the use of the standard initial point when implementing the
algorithm.

It should be noticed that in Assumption 3.1 the usual assumption on the boundedness of the
iterative sequence {xk} (for example see [1, 5, 8, 14, 19] et al.) is replaced by Assumption 3.1
(B). To develop algorithms and convergence analysis without requiring the boundedness of the
iterative sequence {xk} directly has become an active topic of research for nonlinear program-
ming, for very recent references, we can see [17, 18, 25, 32]. As far as we know, Assumption 3.1
(C) is the mildest assumption on approximate Hessian Bk in line search methods for nonlinear
programming in literature. Actually, there are still many newly presented line search algorithms
for nonlinear programming requiring Bk to be uniformly positive definite on <n.

If Assumption 3.1 (B) holds, then it follows from Lemma 2.7 and its proof that xk ∈ C for
all sufficiently large k, implying that {xk} is bounded. Thereby, ‖AkA

T
k ‖ ≤ κ for some constant

κ ≥ 1. Moreover, there is a constant M > 0 such that ‖gk‖ ≤ M, ‖Ak‖ ≤ M, ‖∇2fk‖ ≤
M, ‖∇2hk

j ‖ ≤ M (∀j ∈ E).

Lemma 3.2 Suppose that Assumption 3.1 holds. Then {dk} and {Akλ
k} are bounded, where

(dk, λk) is a KKT pair of problem (2.1)–(2.2).

Proof. If Assumption 3.1 holds, then Condition (a) implies that ‖dk
p‖ is bounded. Since

(gk)T dk + (1/2)(dk)T Bkd
k ≤ (gk)T dk

p + (1/2)(dk
p)

T Bkd
k
p,

one has

(1/2)(dk − dk
p)

T Bk(dk − dk
p) ≤ (gk)T (dk

p − dk) + (dk
p)

T Bk(dk
p − dk)

with AT
k (dk − dk

p) = 0. Thus, by Assumption 3.1 (C),

(γ/2)‖dk − dk
p‖2 ≤ (gk)T (dk

p − dk) + (dk
p)

T Bk(dk
p − dk). (3.1)

If {dk} is unbounded, there exists a subsequence {dk : k ∈ K} satisfying ‖dk‖ → ∞ as k → ∞
and k ∈ K, which implies that ‖dk−dk

p‖ → ∞ as k →∞ and k ∈ K. Divide by ‖dk−dk
p‖2 on the

two sides of (3.1) and take the limit as k →∞ and k ∈ K, we have γ/2 ≤ 0, which contradicts
the assumption γ > 0. The contradiction shows that the claim on the boundedness of {dk} is
correct.

The claim that {Akλ
k} is bounded follows from (2.16) and the boundednesses of gk, Bk and

dk directly.

The following simple result prepares Lemma 3.4.

Lemma 3.3 Let ψ(α) = c1 + c2α
2 − c3α, where c1 ≥ 0, c2 > 0, c3 > 0. Then c1 + c2α

2 ≤ c3α

(that is, ψ(α) ≤ 0) provided that c1 ≤ c2
3/(8c2) and α ∈ [2(c1/c3), (1/2)(c3/c2)]. In particular, if

c1 = 0, then ψ(α) ≤ 0 as α ∈ [0, (1/2)c3/c2].
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Proof. By reformulating, we have ψ(α) = c2(α − c3/(2c2))2 + c1 − c2
3/(4c2). If c1 ≤ c2

3/(8c2),
then c1−c2

3/(4c2) ≤ −c2
3/(8c2). Thus, ψ(α) ≤ 0 if (α−c3/(2c2))2 ≤ c2

3/(4c2
2)−c1/c2. The above

condition is fulfilled if

c3/(2c2)−
√

c2
3/(4c2

2)− c1/c2 ≤ α ≤ c3/(2c2) +
√

c2
3/(4c2

2)− c1/c2. (3.2)

Since

c3/(2c2)−
√

c2
3/(4c2

2)− c1/c2

=
c1/c2

c3/(2c2) +
√

c2
3/(4c2

2)− c1/c2

≤ c1/c2

c3/(2c2)
≤ 2c1/c3

and c3/(2c2) +
√

c2
3/(4c2

2)− c1/c2 ≥ (1/2)(c3/c2), by (3.2), we complete the proof.

Lemma 3.4 Suppose that Assumption 3.1 holds. If for all k ≥ 0

‖Akh
k‖ ≥ η‖hk‖ (3.3)

on some constant η ∈ (0, 1), and ξ1 ≤ min{σ/(2(1 − σ)),min(0.05, (1 − σ)/16)σκ2η
2γ/M}

and ξ2 ≤ (σ/(1 − σ))M with positive constants M, γ, κ2, σ (where γ, κ2 are constants defined
respectively in Assumption 3.1 (C) and Condition (b), and σ is given in Algorithm 2.2), then
there exists a scalar t̃ ∈ (0, 1] independent of k such that 1 ≥ αk ≥ t̃ for all k. Thus, we have
that either both (2.7) and (2.8) are satisfied or (2.9) holds with αk bounded away from zero.

Proof. Suppose that there is some constant ε > 0 such that ‖hk‖ ≥ ε‖dk‖2 > 0. By (3.3) and
Condition (b),

φ(xk; dk) = ‖hk + AT
k dk‖ − ‖hk‖ ≤ −κ2η

2‖hk‖ ≤ −κ2η
2ε‖dk‖2. (3.4)

Thus, ασφ(xk; dk) ≤ −α2ξ2‖dk‖2 as 0 < α ≤ σκ2η
2ε/ξ2. It follows from (2.13), Assumption 3.1

(B) and (3.4) that

v(xk + αdk)− vk − ασφ(xk; dk)

≤ αφ(xk; dk) + (1/2)α2
m∑

j=1

‖∇2hj(xk + θdk)‖‖dk‖2 − ασφ(xk; dk)

≤ (1− σ)αφ(xk; dk) + Mα2‖dk‖2

≤ −(1− σ)ακ2η
2‖hk‖+ Mα2‖dk‖2

≤ (−(1− σ)εκ2η
2 + αM)α‖dk‖2, (3.5)

where M > 0 is a constant such that (1/2)
∑m

j=1 ‖∇2hj(xk + θdk)‖ ≤ M , ∀θ ∈ [0, 1]. Let
t1 = min{(1 − σ)εκ2η

2/M, σκ2η
2ε/ξ2}, then (2.9) holds for all α ∈ [0, t1]. Moreover, t1 =

(1− σ)εκ2η
2/M when ξ2 ≤ (σ/(1− σ))M .

10



We now consider that ‖hk‖ < ε‖dk‖2 for some given ε > 0. Assumption 3.1 (C) suggests
that (dk − dk

p)
T Bk(dk − dk

p) ≥ γ‖dk − dk
p‖2. Condition (a) and the inequality ‖Ak‖ ≤ M imply

that ‖dk
p‖ ≤ κ1‖Akh

k‖ ≤ δ‖hk‖ with δ = κ1M . Thus, based on the boundednesses of {‖Bk‖}
and {‖dk‖}, we have

(dk)T Bkd
k ≥ γ‖dk − dk

p‖2 + 2(dk)T Bkd
k
p − (dk

p)
T Bkd

k
p

≥ γ‖dk‖2 − γ
′‖hk‖, (3.6)

where γ
′
> 0 is a constant. By (2.16) and the equality AT

k dk = AT
k dk

p,

(gk)T dk + (dk)T Bkd
k = (dk

p)
T Akλ

k. (3.7)

Hence, it follows from (3.7), (3.6), and Lemma 3.2 that

(gk)T dk = (dk
p)

T Akλ
k − (dk)T Bkd

k

≤ ‖dk
p‖‖Akλ

k‖+ γ
′‖hk‖ − γ‖dk‖2

≤ γ
′′‖hk‖ − γ‖dk‖2

≤ (γ
′′
ε− γ)‖dk‖2 (3.8)

for some constant γ
′′

> 0. This gives rise to (gk)T dk ≤ −(γ/2)‖dk‖2 provided ε ≤ γ/(2γ
′′
). Due

to

f(xk + αdk)− fk − ασ(gk)T dk

≤ (1− σ)α(gk)T dk + (1/2)α2‖∇2f(xk + θdk)‖‖dk‖2

≤ (−(1− σ)γ/2 + Mα)α‖dk‖2,

where θ ∈ (0, α] and M is a constant such that (1/2)‖∇2f(xk + θdk)‖ ≤ M ∀θ ∈ [0, 1], if
t2 = (1− σ)γ/(2M), then

f(xk + αdk)− fk ≤ ασ(gk)T dk (3.9)

for all α ∈ [0, t2].

From the Taylor’s Theorem, there is a θ ∈ (0, α] such that

v(xk + αdk) ≤ ‖hk + αAT
k dk‖+ (1/2)α2

m∑

j=1

‖∇2hj(xk + θdk)‖‖dk‖2

≤ ‖hk‖+ α(‖hk + AT
k dk‖ − ‖hk‖) + M(α2‖dk‖2)

≤ ε‖dk‖2 + Mα2‖dk‖2 (3.10)

where M is a constant large enough such that both (3.5) and (3.9) hold. By Lemma 3.3, if
α ∈ [4ξ1ε/(σγ), σγ/(4ξ1M)] and ε ≤ σ2γ2/(32Mξ2

1), then

ξ1v(xk + αdk) ≤ σα(γ/2)‖dk‖2. (3.11)

11



Thus, it is proved that, if

ε ≤ min{σ2γ2/(32Mξ2
1), γ/(2γ

′′
)}, (3.12)

then −ξ1v(xk + αdk) ≥ −σα(γ/2)‖dk‖2 ≥ σα(gk)T dk provided α ∈ [4ξ1ε/(σγ), σγ/(4ξ1M)].

If ξ1 ≤ σ/(2(1 − σ)), then t2 ≤ σγ/(4ξ1M). As long as ε ≤ σ(1 − σ)γ2/(32Mξ1), we have
t2 ≥ 16ξ1ε/(σγ), which eventually means that (2.7) holds with α ∈ [4ξ1ε/(σγ), t2] when

ε ≤ min{σ(1− σ)γ2/(32Mξ1), σ2γ2/(32Mξ2
1), γ/(2γ

′′
)}. (3.13)

We have t1 ≥ 16ξ1ε/(σγ) provided ξ1 ≤ σ(1 − σ)κ2η
2γ/(16M). Let t̂ = min{t1, t2, 1}.

Finally, at least one of (2.7) and (2.9) holds with α ∈ [4ξ1ε/(σγ), t̂] for every k ≥ 0.

In the remnant of the proof, we consider (2.8) with ‖hk‖ ≤ ε‖dk‖2. According to the setting
of vk

max in the algorithm and the above discussions, without loss of generality, we assume that
vk
max ≥ ε‖dk‖2 for some given ε > 0 satisfying (3.13). For the trivial case ‖hk‖ = 0, Condition

(a) implies that ‖dk
p‖ = 0, which gives rise to AT

k dk = 0. Hence, by the second inequality of
(3.10), together with (2.2) and (2.10), as α ∈ [0,

√
ε/(2M)], we have

v(xk + αdk) ≤ M(α2‖dk‖2) ≤ (1/2)ε‖dk‖2 ≤ ((rk + 1)/2)vk
max.

In what follows, we assume that ‖hk‖ 6= 0. If xk is generated by an f-type iteration, then
‖hk‖ ≤ max{(rk +1)/2, 0.95}vk

max. Thus, it follows from the second inequality of (3.10) and the
first inequality of (3.4) that

v(xk + αdk) ≤ (1− ακ2η
2)‖hk‖+ α2M‖dk‖2

≤ (1− ακ2η
2)max{(rk + 1)/2, 0.95}vk

max + α2(M/ε)vk
max

≤ max{(rk + 1)/2, 0.95}vk
max − 0.95ακ2η

2vk
max + α2(M/ε)vk

max.

Therefore, (2.8) holds provided that we select α ∈ [0, 0.95κ2η
2ε/M ].

If xk is obtained by an h-type iteration, then ‖hk‖ = rk‖hk−1‖ ≤ rkv
k
max. As α ∈ [0, 0.9κ2η

2ε/M ],
(2.8) holds since, if rk ≥ 0.9, max{(rk + 1)/2, 0.95} = (rk + 1)/2 and

v(xk + αdk) ≤ (1− ακ2η
2)‖hk‖+ α2M‖dk‖2

≤ ((1− ακ2η
2)rk + α2M/ε)vk

max

≤ (rk − 0.9ακ2η
2 + α2M/ε)vk

max

≤ rkv
k
max

< ((rk + 1)/2)vk
max (by (2.10)),

otherwise, rk < 0.9, max{(rk + 1)/2, 0.95} = 0.95 and

v(xk + αdk) ≤ ((1− ακ2η
2)rk + α2M/ε)vk

max

< (0.9− 0.9ακ2η
2 + α2M/ε)vk

max

< 0.95vk
max.
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If ξ1 ≤ 0.05σκ2η
2γ/M , then 4ξ1ε/(σγ) ≤ 0.2κ2η

2ε/M . There holds 4ξ1ε/(σγ) ≤ (1/2)
√

ε/(2M)
provided ε ≤ σ2γ2/(128Mξ2

1). By summarizing the above discussions, if

ξ1 ≤ min{σ/(2(1− σ)),min(0.05, (1− σ)/16)σκ2η
2γ/M}, ξ2 ≤ (σ/(1− σ))M,

we have that either both (2.7) and (2.8) are satisfied or (2.9) holds with α ∈ [4ξ1ε/(σγ), t̂0],
where t̂0 = min{t̂, 0.9κ2η

2ε/M,
√

ε/(2M)}.
At last, the result follows from selecting t̃ ∈ (0, 4ξ1ε/(σγ)] with

ε ≤ min{σ(1− σ)γ2/(32Mξ1), σ2γ2/(128Mξ2
1), γ/(2γ

′′
)}.

Lemma 3.5 Suppose that the conditions in Lemma 3.4 hold. If (2.9) holds for all sufficiently
large k, then

lim
k→∞

vk = 0 and lim
k→∞

‖dk‖ = 0. (3.14)

Proof. By Lemma 3.4, if (2.9) holds for iteration k, then

vk+1 − vk ≤ σαkφ(xk; dk) ≤ −σαkκ2η
2‖hk‖ ≤ −η

′‖hk‖,
where η

′ ∈ (0, 1) is a constant. Therefore, by (2.6), vk+1 ≤ (1 − η
′
)vk, which implies that

limk→∞ vk = 0.

Again by (2.9),

vk+1 − vk ≤ −ξ2α
2
k‖dk‖2 ≤ −ξ2t̃

2‖dk‖2 ≤ 0. (3.15)

By taking the limit on the two sides of (3.15), we have limk→∞ ‖dk‖ = 0.

Lemma 3.6 Suppose that the conditions in Lemma 3.4 hold. If (2.7) is satisfied for all suffi-
ciently large k, then

lim
k→∞

vk = 0 and lim
k→∞

‖dk‖ = 0.

Proof. If for all sufficiently large k, (2.7) holds, then {fk} is monotonically decreasing after a
finite number of iterations. Since

fk+1 − fk ≤ −ξ1v
k+1,

by taking the limit on the two sides of the above inequality, we have limk→∞ vk = 0.

Assume now that ‖dk‖ 6→ 0 for k ∈ K, where K is an infinite subset of the index set. Since
limk→∞ vk = 0, it follows from (3.8) that (gk)T dk ≤ −γ0‖dk‖2 for some constant γ0 > 0 and
k ∈ K. Thus, for sufficiently large k ∈ K,

fk+1 − fk ≤ σαk(gk)T dk ≤ −σt̃γ0‖dk‖2. (3.16)

Together with the fact that {fk} is monotonically decreasing and bounded below, (3.16) implies
that limk→∞,k∈K ‖dk‖ = 0, which is a contradiction. Thus, the result is obtained.
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Lemma 3.7 Suppose that the conditions in Lemma 3.4 hold. Then

lim
k→∞

vk = 0 and lim inf
k→∞

‖∇xL(xk, λk)‖ = 0. (3.17)

Proof. If limk→∞ ‖dk‖ = 0, by (2.16), we have

lim
k→∞

‖∇xL(xk, λk)‖ = lim
k→∞

‖Bkd
k‖ = 0.

If all except for a finite number of iterations are h-type iterations or f-type iterations, then, by
Lemma 3.5 and Lemma 3.6, (3.17) is obtained.

We therefore need only to consider the case where h-type iterations and f-type iterations
appear alternately and constantly. Without loss of generality, assume that the iterations from
the (k(2`−1) + 1)th iteration to the k2`th iteration and from the (k(2`+1) + 1)th iteration to the
k(2`+2)th iteration are h-iterations, and that those from the (k2` +1)th iteration to the k(2`+1)th
iteration are f -iterations, where ` = 0, 1, 2, . . ..

It will be firstly proved that

lim
k→∞

vk = 0. (3.18)

Lemma 3.4 shows that there is a constant t̃ > 0 such that αk ≥ t̃ for all k ≥ 0. Thus, by
(2.9), Condition (b) and (3.3), for any h-iteration at xj ,

vj+1 − vj ≤ σαjφ(xj ; dj) ≤ −σt̃κ2η
2vj ,

which gives rise to that rk ≤ r̂ = 1− σt̃κ2η
2 < 1 for all k ≥ 0. Hence,

max{(rk + 1)/2, 0.95} ≤ max{(r̂ + 1)/2, 0.95} < 1 for all k ≥ 0.

Let r̃ = max{(r̂ + 1)/2, 0.95}. By the algorithm, for ` = 0, 1, 2, . . . ,

vk(2`−1) > v(k(2`−1)+1) > . . . > vk2` , (3.19)

vk(2`+1) > v(k(2`+1)+1) > . . . > vk(2`+2) , (3.20)

and

f (k2`+1) > f (k2`+2) > . . . > fk(2`+1) ,

v(k2`+1) ≤ r̃vk(2`−1) , v(k2`+2) ≤ r̃vk(2`−1) , . . . , vk(2`+1) ≤ r̃vk(2`−1) . (3.21)

That is, the subsequence {. . . , vk(2`−1) , vk(2`+1) , . . .} is a monotonically decreasing sequence with
the ratio vk(2`+1)/vk(2`−1) ≤ r̃ < 1 for all ` ≥ 0. At last, we have

lim
`→∞

vk(2`+1) = 0.
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Combining with (3.19), (3.20), (3.21) and the nonnegativity of vk, (3.18) follows immediately.

In what follows, we prove that there is a subsequence {dk : k ∈ K} such that

lim
k∈K,k→∞

‖dk‖ = 0. (3.22)

If this is not the case, then ‖dk‖ ≥ ε for all sufficiently large integer k and for some small positive
constant ε. Thus, by Lemma 3.4,

−ξ2α
2
k‖dk‖2 ≤ −ξ2t̃

2ε2. (3.23)

On the other hand, since 0 < αk ≤ 1, σαkφ(xk; dk) ≥ −σαk‖hk‖ ≥ −σvk. Therefore, provided
vk ≤ ξ2t̃

2ε2/σ, then

σαkφ(xk; dk) ≥ −ξ2α
2
k‖dk‖2. (3.24)

If (2.9) holds, it follows from (3.24) and (3.23) that vk+1−vk ≤ −ξ2α
2
k‖dk‖2 ≤ −ξ2t̃

2ε2, which by
(3.18) is a contradiction. This contradiction shows that (2.7) and (2.8) hold for all sufficiently
large k. Hence, by Lemma 3.6, limk→∞ ‖dk‖ = 0, which contradicts that ‖dk‖ ≥ ε for all
sufficiently large integer k. The contradiction shows that (3.22) holds on some set K.

From (2.16) and (3.22) we can deduce that

lim
k∈K,k→∞

‖∇xL(xk, λk)‖ = lim
k∈K,k→∞

‖Bkd
k‖ = 0.

Thus, the results in (3.17) have been proved.

The above lemma has proved that under suitable conditions the algorithm will terminate at
an approximate KKT point of the original problem. The following theorem shows that in a more
general situation without requiring (3.3) the presented algorithm has strong global convergence
properties.

Theorem 3.8 Suppose that Assumption 3.1 holds, and that ξ1 and ξ2 are taken as such in
Lemma 3.4. If the tolerance ε > 0 in Algorithm 2.2 is small, then the algorithm terminates in
a finite number of iterations at either an approximate KKT point, or an approximate infeasible
stationary point or an approximate feasible point at which the LICQ (or MFCQ) does not hold.

Proof. Assume that the algorithm does not terminate in a finite number of iterations. We need
to consider two cases:

Case (i). ‖Akh
k‖ ≥ η‖hk‖ for all sufficiently large k and for some constant η > 0. In this

case, Lemma 3.7 shows that the algorithm will terminate since the condition

‖∇xL(xk, λk)‖ ≤ ε and ‖hk‖ ≤ ε

will be satisfied at some iterate xk. For small ε, the termination point is an approximate KKT
point of problem (1.1)–(1.2).
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Case (ii). There is an infinite index set K such that limk∈K,k→∞ ‖Akh
k‖/‖hk‖ = 0. In this

case, the algorithm will terminate at a point xk where

‖Akh
k‖ ≤ ε min(‖hk‖, 1).

For small ε, we need further to investigate two subcases:
Subcase (ii-a). ‖hk‖ is small enough. In this subcase, ‖hk‖ < 1 and ‖Akh

k‖/‖hk‖ ≤ ε. Let
wk = hk/‖hk‖. Then ‖Akw

k‖ ≤ ε. That is, there exists a unitary vector wk ∈ <m such that
‖Akw

k‖ is small enough. Thus, xk is an approximate feasible point at which the LICQ (or
MFCQ) does not hold.
Subcase (ii-b). ‖hk‖ is bounded away from zero, for instance, ‖hk‖ > 1. In this subcase,
‖Akh

k‖ = O(ε), xk can be thought as an approximate stationary point of minimizing the con-
straint violations

min ‖h(x)‖2.

Thus, xk is an approximate infeasible stationary point of problem (1.1)–(1.2).

4. Local analysis

In order to obtain locally rapid convergence, we need to overcome the so-called Maratos effect,
a phenomenon arising in many methods for nonlinear programming where the full superlinear
step is rejected near the solution. Thus, we introduce a second-order correction technique (see
[11, 22]) in Algorithm 2.2 and derive the following algorithm.

Algorithm 4.1 (The algorithm with second-order correction)

Given initial point x0 ∈ <n, constant σ ∈ (0, 1/2), small positive constants ξ1, ξ2, vsoc and the
tolerance ε > 0. Compute g0, h0, A0 and B0. Set v0

max = 0, r0 = 0.9. Let k := 0;

While max(‖∇xL(xk, λk)‖, ‖hk‖) > ε and ‖Akhk‖ > ε min(‖hk‖, 1);

Calculate dk
p approximately minimizing ‖hk + AT

k d‖ on d satisfying Conditions (a)–(b).

Solve the subproblem (2.1)–(2.2). Let dk be the solution.

If both

f(xk + dk)− fk ≤ min{σ(gk)T dk,−ξ1v(xk + dk)} (4.1)

and

v(xk + dk) ≤ max{(rk + 1)/2, 0.95}vk
max if vk

max 6= 0 (4.2)

hold, or inequality

v(xk + dk)− vk ≤ min{σφ(xk; dk),−ξ2‖dk‖2} (4.3)

is satisfied, set xk+1 = xk + dk;
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else if vk ≤ vsoc, calculate d̃k
p approximately minimizing ‖h(xk +dk)+AT

k d‖ on d satisfying
Conditions (a)–(b). Solve the correction subproblem

min (gk)T (dk + d) + (1/2)(dk + d)T Bk(dk + d) (4.4)

s.t. AT
k d = AT

k d̃k
p (4.5)

to obtain d̃k, and check if

f(xk + dk + d̃k)− fk ≤ min{σ(gk)T dk,−ξ1v(xk + dk + d̃k)}, (4.6)

v(xk + dk + d̃k) ≤ max{(rk + 1)/2, 0.95}vk
max if vk

max 6= 0 (4.7)

If both (4.6) and (4.7) are satisfied, set xk+1 = xk + dk + d̃k;

else select αk ∈ (0, 1) as large as possible such that either both inequalities

f(xk + αkdk)− fk ≤ min{σαk(gk)T dk,−ξ1v(xk + αkdk)} (4.8)

and

v(xk + αkdk) ≤ max{(rk + 1)/2, 0.95}vk
max if vk

max 6= 0 (4.9)

hold, or inequality

v(xk + αkdk)− vk ≤ min{σαkφ(xk; dk),−ξ2α
2
k‖dk‖2} (4.10)

is satisfied. Set xk+1 = xk + αkdk.

If either (4.3) or (4.10) holds at xk+1 but not xk, set vk+1
max = vk, else vk+1

max = vk
max;

Compute gk+1, hk+1, vk+1, Ak+1 and Bk+1. If (4.3) or (4.10) holds, calculate rk+1 =
vk+1/vk; otherwise, rk+1 = rk. Let k := k + 1;

end (while)

We use the second-order correction technique only when vk is small enough, where vsoc is
introduced for practical implementations so that we only compute the second-order correction
step as xk is close enough to the solution x∗. We prove that (4.2) will be satisfied as k → ∞.
As a result, the second-order correction procedure will be started if xk + dk is not accepted for
sufficiently large k.

In order to study the local convergence properties of our algorithm, we assume the tolerance
ε = 0 and need some additional assumptions.

Assumption 4.2

(1) xk → x∗ as k → ∞, where x∗ is a KKT point of problem (1.1)–(1.2), λ∗ ∈ <m is an
associated Lagrangian multiplier vector;

(2) f(x) and h(x) are twice differentiable, and their second derivatives are Lipschitz contin-
uous at x∗;
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(3) Jk = J ∗, where J ∗ ⊆ E and Jk ⊆ E are index sets consisting of the largest number of
linearly independent column vectors of {∇h∗j : j ∈ E} and {∇hk

j : j ∈ E}, respectively;

(4) λ∗j = 0 ∀j 6∈ J ∗ and j ∈ E, and λk
j = 0 ∀j 6∈ Jk and j ∈ E;

(5) dT∇2
xxL(x∗, λ∗)d ≥ γ‖d‖2, ∀d ∈ {d 6= 0 : (∇h∗j )

T d = 0, j ∈ J ∗}, where L(x, λ) =
f(x) + λT h(x), and γ > 0 is a constant.

If ∇h∗j , j ∈ E , are linearly independent (for example see [2, 6, 31]), we can see that As-
sumption 4.2 (3) and (4) hold. It follows from Assumption 4.2 (1), (3) and (4) that λ∗ is
unique. Moreover, under Assumption 4.2, if ‖(Bk −∇2

xxL(x∗, λ∗))d‖ = o(‖d‖) at every d ∈ <n,
then there exists a constant γ̃ > 0 such that for all sufficiently large k, dT Bkd ≥ γ̃‖d‖2,
∀d ∈ {d 6= 0 : (∇hk

j )
T d = 0, j ∈ Jk}.

The following results show that under suitable assumptions dk is a superlinearly or quadrat-
ically convergent step.

Theorem 4.3 Suppose that Assumption 4.2 holds and ‖hk+AT
k dk

p‖ ≤ (1−ηk)‖hk‖ (0 < ηk ≤ 1).

(1) If ‖(Bk −∇2
xxL(x∗, λ∗))dk‖ = o(‖dk‖), and (1− ηk) = o(1), then

lim
k→∞

‖xk + dk − x∗‖/‖xk − x∗‖ = 0. (4.11)

(2) If Bk = ∇2
xxL(xk, λk), and (1− ηk) = O(‖hk‖), then

‖xk + dk − x∗‖ = O(‖xk − x∗‖2).

Proof. Let P∗ = I − AJ ∗(AT
J ∗AJ ∗)

−1AT
J ∗ and Pk = I − AJk

(AT
Jk

AJk
)−1AT

Jk
, where I is the

n× n unitary matrix. Consider the system
[

P∗∇2
xxL(x∗, λ∗)
AT
J ∗

]
d = 0. (4.12)

Let d∗ ∈ <n be any of its solutions. If d∗ 6= 0, then

(d∗)T P∗∇2
xxL(x∗, λ∗)d∗ = 0, AT

J ∗d
∗ = 0,

so we have (d∗)T∇2
xxL(x∗, λ∗)d∗ = 0, which contradicts Assumption 4.2 (5). This contradiction

shows that the coefficient matrix of the system (4.12) has full column rank. Therefore, by
Assumption 4.2, for all sufficiently large k, the matrix

[
Pk∇2

xxL(x∗, λ∗)
AT
Jk

]

is of full column rank.

Since gk + Bkd
k + AJk

λk
Jk

= 0, there holds

PkBkd
k = −Pk(gk + AJk

λ∗Jk
)

= −Pk∇2
xxL(x∗, λ∗)(xk − x∗) + O(‖xk − x∗‖2).
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Thus,

Pk(Bk −∇2
xxL(x∗, λ∗))dk = −Pk∇2

xxL(x∗, λ∗)(xk + dk − x∗) + O(‖xk − x∗‖2). (4.13)

Thanks to hk
Jk

= hk
Jk
− h∗Jk

= AT
Jk

(xk − x∗) + O(‖xk − x∗‖2) and h∗Jk
= 0, there holds

AT
Jk

(xk + dk − x∗) = hk
Jk

+ AT
Jk

dk + O(‖xk − x∗‖2). (4.14)

Putting (4.13) and (4.14) together in a matrix, we can obtain
[

Pk∇2
xxL(x∗, λ∗)
AT
Jk

]
(xk + dk − x∗)

=

[
−Pk(Bk −∇2

xxL(x∗, λ∗))dk

hk
Jk

+ AT
Jk

dk

]
+ O(‖xk − x∗‖2), (4.15)

where the coefficient matrix has previously been proved to be of full column rank for all suffi-
ciently large k.

(1) Note that (1− ηk) = o(1), ‖hk‖ = ‖hk − h∗‖ = O(‖xk − x∗‖) and

‖hk
Jk

+ AT
Jk

dk‖ ≤ ‖hk + AT
k dk‖ ≤ (1− ηk)‖hk‖, (4.16)

implying that

‖hk
Jk

+ AT
Jk

dk‖ = o(‖xk − x∗‖).
If ‖(Bk −∇2

xxL(x∗, λ∗))dk‖ = o(‖dk‖), then
∥∥∥∥∥

[
−Pk(Bk −∇2

xxL(x∗, λ∗))dk

hk
Jk

+ AT
Jk

dk

]∥∥∥∥∥ =
√

o(‖dk‖2) + o(‖xk − x∗‖2).

Hence, by (4.15) and since xk → x∗ as k →∞, there holds

lim
k→∞

‖xk + dk − x∗‖/‖xk − x∗‖ = lim
k→∞

o(‖dk‖)/‖xk − x∗‖, (4.17)

which shows that

lim
k→∞

‖dk‖/‖xk − x∗‖ = 1. (4.18)

Thus, (4.11) follows from (4.17).

(2) If Bk = ∇2
xxL(xk, λk) and 1− ηk = O(‖hk‖), then it follows from (4.16) that

‖hk
Jk

+ AT
Jk

dk‖ = O(‖xk − x∗‖2).

Thus,
∥∥∥∥∥

[
−Pk(Bk −∇2

xxL(x∗, λ∗))dk

hk
Jk

+ AT
Jk

dk

]∥∥∥∥∥ = O(‖xk − x∗‖2).

The result is obtained immediately from (4.15) due to xk → x∗ as k →∞.

According to (4.18), dk → 0 as xk → x∗, and ‖dk‖ = O(‖xk−x∗‖). By (4.11), ‖xk+dk−x∗‖ =
o(‖xk − x∗‖).
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Lemma 4.4 Suppose that Assumption 4.2 holds, and ‖(Bk − ∇2
xxL(x∗, λ∗))dk‖ = o(‖dk‖),

‖hk + AT
k dk‖ ≤ (1 − ηk)‖hk‖, (1 − ηk) = o(1). If (4.3) does not hold for sufficiently large

k, then

vk = O(‖dk‖2).

Proof. If (4.3) fails to hold, then we have that either σφ(xk; dk) ≤ −ξ2‖dk‖2 and

v(xk + dk)− vk > σφ(xk; dk) (4.19)

or σφ(xk; dk) > −ξ2‖dk‖2 and

v(xk + dk)− vk > −ξ2‖dk‖2. (4.20)

As (4.19) holds, since φ(xk; dk) ≥ −vk and

v(xk + dk) = ‖h(xk + dk)‖
≤ ‖hk + AT

k dk‖+ O(‖dk‖2)

≤ (1− ηk)vk + O(‖dk‖2), (4.21)

we have (ηk − σ)vk = O(‖dk‖2). Thus, the result follows from (1 − ηk) = o(1) and σ < 1.
Otherwise, by (4.20) and (4.21), ηkv

k ≤ ξ2‖dk‖2 + O(‖dk‖2), which again by the supposition
(1− ηk) = o(1) implies the result. Hence, the proof is finished.

Corresponding to Assumption 4.2 (4), we need the following assumption on the second-order
correction subproblem:

Assumption 4.5 λ̃k
j = 0 ∀j 6∈ Jk and j ∈ E, where λ̃k ∈ <m is the associated Lagrangian

multiplier vector of the correction subproblem (4.4)–(4.5).

Lemma 4.6 Under Assumption 4.2 and Assumption 4.5, if ‖(Bk − ∇2
xxL(x∗, λ∗))d‖ = o(‖d‖)

at every d ∈ <n, ‖hk + AT
k dk‖ ≤ (1− ηk)‖hk‖ and (1− ηk) = o(1), then

‖d̃k‖ = o(‖dk‖).

Proof. The first part of the proof of Theorem 4.3 has demonstrated that the matrix
[

Pk∇2
xxL(x∗, λ∗)
AT
Jk

]

has full column rank. Thus, there exists a constant δ̂ > 0 such that
∥∥∥∥∥

[
Pk∇2

xxL(x∗, λ∗)
AT
Jk

]
d

∥∥∥∥∥ ≥ δ̂‖d‖ (4.22)

for every d ∈ <n.
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If ‖(Bk −∇2
xxL(x∗, λ∗))d‖ = o(‖d‖) at every d ∈ <n, thanks to ‖AT

k d‖ ≥ ‖AT
Jk

d‖ and

‖PkBkd‖ ≥ ‖Pk∇2
xxL(x∗, λ∗)d‖ − ‖Pk(Bk −∇2

xxL(x∗, λ∗))d‖,

by (4.22), there is a positive constant δ̌ < δ̂ such that
∥∥∥∥∥

[
PkBk

AT
k

]
d

∥∥∥∥∥ ≥ δ̌‖d‖ (4.23)

for every d ∈ <n and for all sufficiently large k.

Since d̃k solves problem (4.4)–(4.5), then

gk + Bk(dk + d̃k) + Akλ̃
k = 0, (4.24)

where λ̃k is the associated Lagrangian multiplier vector. Let J̃k = E\Jk. Assumption 4.2 (4)
and Assumption 4.5 imply that AJ̃k

λk
J̃k

= 0 and AJ̃k
λ̃k
J̃k

= 0. Thus, by (2.16) and (4.24),

Bkd̃
k = Ak(λk − λ̃k) = AJk

(λk
Jk
− λ̃k

Jk
),

which gives rise to PkBkd̃
k = 0. Hence, using (4.23), we have

δ̌‖d̃k‖ ≤ ‖AT
k d̃k‖. (4.25)

The Condition (a) suggests that ‖d̃k
p‖ ≤ κ1‖Akh(xk + dk)‖, which induces to

‖AT
k d̃k‖ = ‖AT

k d̃k
p‖

≤ κ1‖AT
k ‖‖Ak‖‖h(xk + dk)‖

≤ κ1‖AT
k ‖‖Ak‖(‖hk + AT

k dk‖+ O(‖dk‖2))

≤ κ1‖AT
k ‖‖Ak‖((1− ηk)‖hk‖+ O(‖dk‖2)). (4.26)

Owing to ‖hk‖ = O(‖xk − x∗‖) = O(‖dk‖) and (1− ηk) = o(1), we can obtain from (4.26) that

‖AT
k d̃k‖ = o(‖dk‖),

and then complete the proof by (4.25).

Lemma 4.7 Suppose that Assumption 4.2 and Assumption 4.5 hold. If ‖(Bk−∇2
xxL(x∗, λ∗))d‖

= o(‖d‖) at every d ∈ <n, σ < 1/2, ‖hk + AT
k dk‖ ≤ (1 − ηk)‖hk‖, ‖h(xk + dk) + AT

k d̃k‖ ≤
(1− ηk)‖h(xk + dk)‖, (1− ηk) = o(1), and

vk = O(‖dk‖2), (4.27)

then (4.6) and (4.7) hold for sufficiently large k.
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Proof. The Condition (a) and (4.27) imply that

‖dk
p‖ = O(‖dk‖2). (4.28)

Thus, for sufficiently large k, there holds

(dk)T Bkd
k = (dk − dk

p)
T Bk(dk − dk

p) + 2(dk)T Bkd
k
p − (dk

p)
T Bkd

k
p

≥ γ̃‖dk − dk
p‖2 −O(‖dk‖3)

≥ γ̂‖dk‖2, (4.29)

where γ̂ > 0 is a constant and γ̂ < γ̃. Since dk is the solution of program (2.1)–(2.2), then one
has

(gk)T dk + (1/2)(dk)T Bkd
k ≤ (gk)T dk

p + (1/2)(dk
p)

T Bkd
k
p.

By (4.28) and (4.29), we obtain that, for sufficiently large k,

(gk)T (dk − dk
p) ≤ −γ̌‖dk‖2,

where γ̌ is a constant and γ̌ < γ̂. Therefore, by (4.28), as ‖dk‖ → 0, for sufficiently large k,
there exists a constant ξ̃ > 0 such that

(gk)T dk ≤ −ξ̃‖dk‖2. (4.30)

By the setting of vk
max, without loss of generality, we assume that vk

max ≥ ε‖dk‖2 for some
small ε > 0. Owing to vk ≤ max{(rk + 1)/2, 0.95}vk

max,

v(xk + dk + d̃k) = ‖h(xk + dk + d̃k)‖
≤ ‖h(xk + dk) + AT

k d̃k‖+ o(‖dk‖2)

≤ (1− ηk)v(xk + dk) + o(‖dk‖2), (4.31)

and v(xk + dk) ≤ ‖hk + AT
k dk‖+ O(‖dk‖2) ≤ (1− ηk)vk + O(‖dk‖2), then

v(xk + dk + d̃k) ≤ (1− ηk)2 max{(rk + 1)/2, 0.95}vk
max + o(‖dk‖2)

≤ max{(rk + 1)/2, 0.95}vk
max − 0.95ηk(2− ηk)ε‖dk‖2 + o(‖dk‖2).

Thus, the inequality (4.7) holds for sufficiently large k.

It follows from (4.21) and (4.27) that

v(xk + dk) = O(‖dk‖2). (4.32)

Consequently, by (4.31), and due to (1− ηk) = o(1),

v(xk + dk + d̃k) = o(‖dk‖2). (4.33)

Both (4.30) and (4.33) imply that for sufficiently large k

σ(gk)T dk ≤ −ξ1v(xk + dk + d̃k).
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Hence, in order to prove that (4.6) holds for sufficiently large k, we are left to prove that for
sufficiently large k there holds

f(xk + dk + d̃k)− fk ≤ σ(gk)T dk. (4.34)

Noticing that ‖xk + dk + d̃k − x∗‖ = o(‖dk‖), ‖xk − x∗‖ = O(‖dk‖) and

L(xk + dk + d̃k, λ∗)− L(xk, λ∗)

= L(xk + dk + d̃k, λ∗)− L(x∗, λ∗)− (L(xk, λ∗)− L(x∗, λ∗))

= −(1/2)(xk − x∗)T∇2
xxL(x∗, λ∗)(xk − x∗) + o(‖dk‖2),

we can deduce that

f(xk + dk + d̃k)− fk

= L(xk + dk + d̃k, λ∗)− L(xk, λ∗)− (λ∗)T (h(xk + dk + d̃k)− hk)

= −(1/2)(xk − x∗)T∇2
xxL(x∗, λ∗)(xk − x∗)− (λ∗)T (h(xk + dk + d̃k)− hk) + o(‖dk‖2)

= −(1/2)(xk − x∗)T∇2
xxL(x∗, λ∗)(xk − x∗)− (λ∗)T AT

k (dk + d̃k)

−(1/2)
m∑

j=1

λ∗j (d
k + d̃k)T∇2hk

j (d
k + d̃k) + o(‖dk‖2)

= −(1/2)(xk − x∗)T∇2
xxL(x∗, λ∗)(xk − x∗)−∇xL(xk, λ∗)T dk − (λ∗)T AT

k d̃k

+(gk)T dk − (1/2)
m∑

j=1

λ∗j (d
k + d̃k)T∇2hk

j (d
k + d̃k) + o(‖dk‖2)

= −(1/2)(xk − x∗)T∇2
xxL(x∗, λ∗)dk − (1/2)

m∑

j=1

λ∗j (d
k)T∇2hk

j d
k

−(λ∗)T AT
k d̃k + (gk)T dk + o(‖dk‖2).

Combining with the results ‖xk + dk − x∗‖ = o(‖dk‖), ‖d̃k‖ = o(‖dk‖), and

m∑

j=1

λ∗j (d
k)T∇2hk

j d
k = −(λ∗)T (Ak −A∗)T dk + o(‖dk‖2), (4.35)

we can further deduce that

f(xk + dk + d̃k)− fk − σ(gk)T dk

= (1/2)(dk)T∇2
xxL(x∗, λ∗)dk − (1/2)

m∑

j=1

λ∗j (d
k)T∇2hk

j d
k

+(1− σ)(gk)T dk − (λ∗)T AT
k d̃k + o(‖dk‖2),

= (1/2)(dk)T∇2
xxL(x∗, λ∗)dk + (1/2)∇xL(xk, λ∗)T dk − (1/2)(A∗λ∗)T dk

+(1/2− σ)(gk)T dk − (λ∗)T AT
k d̃k + o(‖dk‖2)

= (1/2− σ)(gk)T dk − (1/2)(λ∗)T AT
∗ dk − (λ∗)T AT

k d̃k + o(‖dk‖2). (4.36)
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Due to

(1/2)(λ∗)T AT
∗ dk + (λ∗)T AT

k d̃k

= (1/2)(λ∗)T (A∗ −Ak)T dk + (1/2)(λ∗)T AT
k (dk + d̃k) + (1/2)(λ∗)T AT

k d̃k + o(‖dk‖2)

= (1/4)(λ∗)T (A∗ −Ak)T dk + (λ∗)T h(xk + dk + d̃k)− (1/2)(λ∗)T (hk + h(xk + dk))

+o(‖dk‖2)

= (1/4)(λ∗)T (A∗ −Ak)T dk − (1/2)(λ∗)T (hk + h(xk + dk)) + o(‖dk‖2)

= (1/4)(λ∗)T (A∗ −Ak)T dk − (1/2)(λ∗)T (hk + AT
k dk)− (1/2)(λ∗)T (h(xk + dk) + AT

k d̃k)

+(1/2)(λ∗)T AT
k (dk + d̃k) + o(‖dk‖2)

= (1/4)(λ∗)T (A∗ −Ak)T dk + (1/2)(λ∗)T AT
k (dk + d̃k) + o(‖dk‖2)

= (1/4)(λ∗)T AT
∗ dk + (1/4)(λ∗)T AT

k dk + (1/2)(λ∗)T AT
k d̃k + o(‖dk‖2),

where the second equality is obtained by (4.35), the third by (4.33), the fifth by (4.27) and
(4.32), it follows that

(1/2)(λ∗)T AT
∗ dk + (λ∗)T AT

k d̃k = (1/2)(λ∗)T AT
k dk + o(‖dk‖2).

Hence, by (4.36), we have

f(xk + dk + d̃k)− fk − σ(gk)T dk

= (1/2− σ)(gk)T dk − (1/2)(λ∗)T AT
k dk + o(‖dk‖2)

= (1/2− σ)(gk)T dk − (1/2)(λ∗)T AT
k dk

p + o(‖dk‖2)

= (1/2− σ)(gk)T dk + (1/2)(gk)T dk
p + o(‖dk‖2),

where the second equality follows from (2.2) and the third from (gk + Akλ
∗)T dk

p = o(‖dk‖2).
Therefore, (4.34) follows from (4.30) due to σ < 1/2 and ‖dk

p‖ = O(‖dk‖2) (see (4.28)).

Making use of the results in Lemma 4.4 and Lemma 4.7, we can conclude that the full
superlinearly convergent step will be accepted by Algorithm 4.1 for sufficiently large k.

Theorem 4.8 Suppose that Assumption 4.2 and Assumption 4.5 hold. If ‖(Bk−∇2
xxL(x∗, λ∗))d‖

= o(‖d‖) at every d ∈ <n, σ < 1/2, ‖hk + AT
k dk‖ ≤ (1 − ηk)‖hk‖, ‖h(xk + dk) + AT

k d̃k‖ ≤
(1 − ηk)‖h(xk + dk)‖, and (1 − ηk) = o(1), then either xk+1 = xk + dk or xk+1 = xk + dk + d̃k

for sufficiently large k.

Proof. For sufficiently large k, if either (4.1) or (4.3) is satisfied, then xk+1 = xk +dk; otherwise,
(4.3) does not hold, thus by Lemma 4.4 and Lemma 4.7, (4.6) and (4.7) will then be satisfied
for sufficiently large k, which give rise to xk+1 = xk + dk + d̃k by Algorithm 4.1.

5. Numerical experiments

We have implemented Algorithm 2.2 in MATLAB, run with version R2008a. The numerical
test were conducted on a Lenovo laptop with the LINUX operating system (Fedora 11). A
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set of 60 small- and medium-size test problems from the CUTE collection [3] were solved. For
comparison, these problems were also solved with LANCELOT [10], a state-of-the-art solver
for nonlinear constrained optimization problems, in which the BFGS approximate second-order
derivative was used.

5.1. Solving the subproblems. We compute the null space matrix Wk of AT
k directly by

the MATLAB’s null space routine, which generates an orthonormal basis for the null space of
AT

k obtained from the singular value decomposition. The solution of subproblem (2.1)-(2.2)
is obtained by forming the reduced Hessian explicitly and using the MATLAB’s routine of bi-
conjugate gradients method with preconditioner generated by the sparse incomplete Cholesky-
Infinity factorization.

Intentionally, we compute dk
p to satisfy the Conditions (a)–(b). Firstly, we solve the

equation (AT
k Ak)p = hk by the bi-conjugate gradients method to get a solution pk and set

dk
n = −Akp

k. We then take dk
p = dk

n provided the conditions ‖hk +AT
k dk

n‖ ≤ min{0.5, ‖hk‖}‖hk‖
and ‖dk

n‖ ≤ κ max{θk, 1}‖Akh
k‖ are satisfied, where κ = 104 in our implementation and θk is the

same as that in Lemma 2.1; otherwise, we compute a Cauchy step by the formula dk
c = −θkAkh

k

and calculate (µk, νk) which minimizes ‖hk + AT
k (µdk

n + νdk
c )‖, and if both µk and νk are finite

(which are decided by the MATLAB function isfinite), we set dk
p = µkd

k
n + νkd

k
c , else we take

dk
p = dk

c .

5.2. Numerical results. In Algorithm 2.2, Bk is updated by the Powell’s damped BFGS
update procedure [22, 26], where the estimate λk of the Lagrangian multipliers are given by
MATLAB’s LSQR method. The parameters are selected as follows: ξ1 = 10−10, ξ2 = 10−4,
σ = 0.01. The step-size is decided by the Armijo line search procedure with αk = τ ` and
τ = 0.6, ` = 0, 1, . . .. The algorithm is terminated with ε = 10−5.

We explain how the problems in CUTE were selected in our comparisons. In Table 1 and
Table 2, we report the computational results for those problems where the difference between the
optimal function value achieved by our algorithm and that obtained by LANCELOT was within
the termination tolerance. Some other problems were not included since either our algorithm
found a solution with different objective value from that derived by LANCELOT (that is, the
difference between them was out of the termination tolerance, such as for problems BT2, HS47,
MWRIGHT), or either our algorithm or LANCELOT did not find a solution before reaching
the restriction of number 1000 of function evaluations (such as problems HEART6, HEART8,
HS56, HS111LNP, HYDCAR6, HYDCAR20 for which LANCELOT reached the restriction of
number 1000 of function evaluations before the termination for a solution, and problems BT7,
BYRDSPHR, HATFLDF, HS27, POWELLSQ for which our algorithm reached the restriction
of number 1000 of function evaluations before the termination for a solution).

The number of f, h evaluations and the number of g, A evaluations for testing problems are
listed in Tables 1 and 2, where the column “Algorithm 2.2” shows the results for Algorithm
2.2 and the column “LANCELOT” shows the results for LANCELOT (Version 27/02/2001).
The specification file for LANCELOT was changed only in that the setting on the use of exact
Hessian information was replaced by the use of BFGS approximate Hessian.
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Table 1: Results for CUTE problems using approximate Hessians, Part 1

Algorithm 2.2 LANCELOT Problem Dim.
Problem f, h g, A f, h g, A n m

AIRCRFTA 3 3 5 5 8 5
BDVALUE 3 2 2 2 502 500
BDVALUES 10 10 20 20 12 10

BOOTH 2 2 4 4 2 2
BRATU2D 2 2 4 4 484 400

BRATU2DT 2 2 8 8 484 400
BRATU3D 2 2 5 5 1000 512

BT1 11 8 57 47 2 1
BT3 8 8 15 15 5 3
BT4 14 14 27 26 3 2
BT5 9 9 67 43 3 2
BT6 30 29 51 39 5 2
BT8 11 11 27 25 5 2
BT9 57 41 23 23 4 2
BT10 8 8 21 21 2 3
BT11 13 13 23 20 5 3
BT12 9 8 23 19 5 4

CBRATU2D 2 2 4 4 512 392
CBRATU3D 3 3 5 5 686 250
CLUSTER 8 8 13 10 2 2
CUBENE 12 5 42 34 2 2

DECONVNE 4 4 28 23 61 40
GENHS28 9 9 10 10 10 8
GOTTFR 9 6 12 11 2 2
HATFLDG 25 7 24 20 25 25

HIMMELBA 2 2 3 3 2 2
HIMMELBC 7 6 9 8 2 2
HIMMELBE 3 3 4 4 3 3

HS6 14 11 58 42 2 1
HS7 12 12 24 19 2 1
HS8 6 5 11 10 2 2
HS9 7 7 11 11 2 1
HS26 36 26 33 31 3 1
HS28 10 9 4 4 3 1
HS39 57 41 674 630 4 2
HS40 7 7 15 14 4 3
HS42 11 9 13 13 4 2
HS46 29 27 28 25 5 2
HS48 13 10 4 4 5 2
HS49 27 22 25 25 5 2
HS50 25 15 19 19 5 3
HS51 10 9 3 3 5 3
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Table 2: Results for CUTE problems using approximate Hessians, Part 2

Algorithm 2.2 LANCELOT Problem Dim.
Problem f, c g, A f, c g, A n m

HS52 8 7 11 11 5 3
HS61 13 11 18 17 3 2
HS77 29 26 35 30 5 2
HS78 9 9 26 15 5 3
HS79 13 13 12 12 5 3

HS100LNP 79 35 510 468 7 2
HYPCIR 6 5 7 7 2 2

INTEGREQ 2 2 3 3 102 100
MARATOS 5 5 9 9 2 1
METHANB8 3 3 348 342 31 31
ORTHREGB 7 7 140 116 27 6
POWELLBS 26 16 48 42 2 2

RECIPE 12 12 43 37 2 2
RSNBRNE 36 10 34 30 2 2
S316-322 9 8 24 24 2 1

SINVALNE 35 10 37 30 2 2
TRIGGER 8 8 20 18 7 6
ZANGWIL3 2 2 8 8 3 3

Although our MATLAB implementation uses MATLAB’s routines simply, the number of
function and gradient evaluations for most problems are very satisfactory. The fast local con-
vergence during the numerical solution is also observed, which is consistent with our local con-
vergence theory. These results show that the SQP method without a penalty function or a filter
is robust and efficient. Moreover, it is believed that further improvements can be achieved by
using advanced techniques for, e.g., the computations of Wk and dk

p.
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