
SIAM J. OPTIM. c© 2007 Society for Industrial and Applied Mathematics
Vol. 18, No. 1, pp. 65–86

AN INTERIOR-POINT TRUST-REGION ALGORITHM FOR
GENERAL SYMMETRIC CONE PROGRAMMING∗

YE LU† AND YA-XIANG YUAN‡

Abstract. An interior-point trust-region algorithm is proposed for minimizing a general (non-
convex) quadratic objective function in the intersection of a symmetric cone and an affine subspace.
The algorithm uses a trust-region model to ensure descent on a suitable merit function. Global
first-order and second-order convergence results are proved. Numerical results are presented.
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1. Introduction. In the last two decades, interior-point algorithms for convex
programming have been developed quite well in both theory and practice. However,
research on interior-point algorithms for nonconvex programming is still very active,
as nonconvex problems are considerably more difficult. We mention here some of the
recent works. For semidefinite relaxations, see Zhang [33] and Ye and Zhang [31]; for
line search based algorithms, see Absil and Tits [1] and Bakry et al. [3], Forsgren and
Gill [12], Gay, Overton, and Wright [13], Tits et al. [25], Vanderbei and Shanno [27],
and Wächter [28]. By contrast, for trust-region-type interior-point algorithms, Ye [29]
developed an affine scaling algorithm for indefinite quadratic programming by solving
sequential trust-region subproblems. Global first-order and second-order convergence
results were proved, and later enhanced by Sun [24] for the convex case. The idea of
affine scaling can be traced back to Dikin [8]. An affine-scaling potential-reduction
interior-point trust-region algorithm was developed for the indefinite quadratic pro-
gramming in Ye [30, section 9]. Recently, in Faybusovich and Lu [11], Ye’s algorithm
has been extended to the minimization of a quadratic function in the intersection of
a symmetric cone and an affine subspace. In this paper, we call such a problem sym-
metric cone programming and develop an affine-scaling primal barrier interior-point
trust-region algorithm to solve it. Since the class of symmetric cones contains the
positive orthant in Rn, the second-order cone, and the cone of positive semidefinite
symmetric matrices, our approach solves a large class of optimization problems. In the
trust-region literature, we refer the reader to Conn, Gould, and Toint [6, section 13]
for a primal barrier algorithm and Conn et al. [7] for a primal-dual algorithm. Under
the theoretical framework of their work, we bring the properties of ϑ-normal barrier
and symmetric cone into our analysis. By doing so, we show that the primal barrier
algorithm developed in Conn, Gould, and Toint [6] can be extended to solve symmetric
cone programming. Although our algorithm still provides the mechanism to declare
the iteration unsuccessful if feasibility is not achieved, it does not contain an explicit
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constraint on the step calculation (see constraint (13.2.1) in Conn, Gould, and Toint
[6, p. 499] and the constraint (13.3.1) of the algorithm in Conn, Gould, and Toint
[6, p. 505]). This makes our algorithm theoretically somewhat simpler, although its
practical merit remains to be investigated. Moreover, we establish inequality (4.22)
in section 4 of this paper to explicitly estimate the convergence of the algorithm. This
is quite remarkable, since our analysis does not require any convexity assumptions.

This paper is organized as follows. In section 2, we present some concepts and
results of the symmetric cone and ϑ-normal barrier in the theory of interior-point
methods. In section 3, we formulate the first-order and second-order optimality con-
ditions for our optimization problem. In section 4, we present a convergence analysis
for our interior-point trust-region algorithm. The techniques of proofs in Lemmas 4.3–
4.6 essentially follow from Conn, Gould, and Toint [6, section 13], together with the
applications of the properties of the ϑ-normal barrier. In section 5, our algorithm
is used to solve the large-scale trust-region subproblem. In section 6, we apply our
algorithm to a class of quadratic programs and discuss some further implementation
issues. Concluding remarks and recommendations are presented in section 7.

2. Symmetric cone and ϑ-normal barrier. In this section we introduce some
concepts and relevant results which will be used in the following sections.

Nesterov and Nemirovskii [18] developed the concept of ϑ-normal barrier, which
has become one of the most important tools for the analysis of interior-point methods.
It is also an essential tool in our analysis. We assume that K is a convex cone in a
finite-dimensional real vector space E. Let K◦ be the interior of K. The definition of
ϑ-normal barrier is given as follows.

Definition 2.1. Let F : K◦ → R be a C3-smooth strictly convex function such
that F is a barrier for K (i.e., F (x) → ∞ as x ∈ K◦ approaches the boundary of K),
and there exists ϑ ≥ 1 such that for each t > 0,

F (tx) = F (x) − ϑ ln(t)(2.1)

and

| F ′′′
(x)[h, h, h] | ≤ 2 〈F ′′

(x)h, h〉3/2(2.2)

for all x ∈ K◦ and for all h ∈ E. Then F is called a ϑ-normal barrier for K and ϑ
is called barrier parameter of F .

In principle, every convex cone admits a ϑ-normal barrier (see Nesterov and Ne-
mirovskii [18, section 4]). But, in this paper we consider only a special kind of convex
cone, called a symmetric cone. As a regular convex cone K in a finite-dimensional
real vector space E endowed with an inner product 〈 〉, the dual of K is defined as

K∗ = {y ∈ E | 〈x, y〉 ≥ 0 ∀x ∈ E}.

We define Aut(K) to be the set of automorphisms of the convex cone K, that is,
AK = K for any A ∈ Aut(K). The following is the definition of symmetric cone.

Definition 2.2. A convex cone K is called homogeneous if Aut(K) is transitive
on K◦; that is, given any pair of points x, s ∈ K◦ there exists A ∈ Aut(K) such that
Ax = s. The cone K is said to be self-dual if there is an inner product such that
K∗ = K. K is said to be symmetric if it is homogeneous and self-dual.

The following important cones are special symmetric cones.
The positive orthant. The simplest symmetric cone is the positive orthant

Rn
++ = {x | x > 0, x ∈ Rn} = R++ ⊕ · · · ⊕R++,(2.3)
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which is the direct sum of n copies of R++. F (x) = −
∑n

i=1 lnxi is a ϑ-normal barrier
for Rn

++ with ϑ = n.
The second-order cone. This is the cone defined by

SOC :=

{
x ∈ Rn :

n−1∑
i=1

x2
i ≤ x2

n and xn ≥ 0

}
.(2.4)

The function F (x) = − ln(x2
n −

∑n−1
i=1 x2

i ) is a ϑ-normal barrier for the second-
order cone SOC with ϑ = 2.

The cone of positive semidefinite matrices. This is the cone of all positive semidef-
inite matrices

Sn×n
+ = {X |X ∈ Rn×n, X positive semidefinite}.(2.5)

F (X) = − ln det(X) is a ϑ-normal barrier for Sn×n
+ with ϑ = n.

Let F ′′(x) denote the Hessian of ϑ-normal barrier F (x). The strictly convex
assumption of F (x) implies that F ′′(x) is positive definite for every x ∈ K◦. Thus,

‖v‖x = 〈v, F ′′(x)v〉 1
2 is a norm on E induced by F ′′(x). Let Bx(y, r) denote the open

ball of radius r centered at y, where the radius is measured with respect to ‖ ‖x. This
ball is called the Dikin ball. The following lemmas are very crucial for the analysis of
our algorithm in the next sections.

Lemma 2.1. Assume F (x) is a ϑ-normal barrier for K; then for all x ∈ K◦ we
have Bx(x, 1) ⊆ K◦.

Lemma 2.2. Assume F (x) is a ϑ-normal barrier for K, x ∈ K◦, and y ∈
Bx(x, 1); then∣∣∣∣F (y) − F (x) − 〈F ′(x), y − x〉 − 〈y − x, F ′′(x)(y − x)〉

2

∣∣∣∣ ≤ ‖y − x‖3
x

3(1 − ‖y − x‖x)
.(2.6)

Lemma 2.3. Let F be a ϑ-normal barrier for K; then

F ′′(x)−1F ′(x) = −x,(2.7)

〈−F
′
(x), x〉 = ϑ.(2.8)

Lemma 2.4. If K is a symmetric cone and F is a ϑ-normal barrier for K, then
F ′′(x) is a linear automorphism of K for each x ∈ K◦.

The proofs of the above lemmas can be found in Chapter 2 of Renegar [20].
Lemma 2.1 tells us the ball of radius 1 measured by ‖.‖x is always contained

in K◦. Lemma 2.2 shows that at least locally, the quadratic approximation is very
good for the ϑ-normal barrier F . Lemma 2.3 plays an important role in our proof
of Lemma 4.1 in section 4. Lemma 2.4 is a special property of the symmetric cone,
which is one of the reasons why in this paper we focus on the symmetric cones instead
of general cones.

3. Optimality conditions. In this section, we formulate the first-order and
second-order optimality conditions of our optimization problem:

We consider the following optimization problem:

min q(x) =
1

2
〈x,Qx〉 + 〈c, x〉(3.1)

subject to Ax = b,(3.2)

x ∈ K.(3.3)
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Here Q : E → E is a symmetric linear operator, c ∈ E. A : E → Rm is a
linear operator and b ∈ Rm. K is a symmetric cone. We assume that our feasible
set �p = {x ∈ E|Ax = b, x ∈ K} is bounded and has relative interior. The following
theorem is the first-order optimality condition for our optimization problem. For a
proof, see, e.g., Bonnans and Shapiro [5] or Faybusovich and Lu [11].

Theorem 3.1 (first-order optimality condition). If x∗ is a locally minimal solu-
tion of (3.1)–(3.3), then there exists s ∈ K∗(= K) such that Qx∗ + c− s ∈ R(A∗) and
〈x∗, s〉 = 0; here R(A∗) is the range of A∗ and A∗ : Rm → E is the adjoint of A.

Assume x is a point in our feasible set �p = {x ∈ E|Ax = b, x ∈ K}; there must
be a unique face �x of �p such that x is a relative interior point of �x. We denote
Aff(�x) to be the affine space generated by �x and Vx to be the vector space such
that Aff(�x) = Vx + x. Now we are ready to formulate the second-order optimality
condition.

Theorem 3.2 (second-order optimality condition). If x∗ is a locally minimal
solution of (3.1)–(3.3), �x∗ is the unique face of the feasible set �p such that x∗

is one of its relative interior points, and Vx∗ = Aff(�x∗) − x∗, then Q is positive
semidefinite over Vx∗ .

Proof. For all d ∈ Vx∗ , because x∗ is a relative interior of �x∗ , we know x∗ + td ∈
�x∗ , provided that |t| is sufficiently small. Hence, there exists a ε > 0 such that

q(x∗ + td) − q(x∗) = t〈Qx∗ + c, d〉 +
t2

2
〈d,Qd〉 ≥ 0(3.4)

as long as |t| ≤ ε, due to the fact that x∗ is a local minimim. The above inequality
implies that

〈Qx∗ + c, d〉 = 0, 〈d,Qd〉 ≥ 0.(3.5)

This completes our proof.

If x ∈ K◦, it is obvious that Vx = {x ∈ E|Ax = 0}. If x ∈ ∂K, the matter
becomes much more complicated. But fortunately, we can get some very helpful
results in the case of symmetric cones.

If K = Rn
++ and x′ ∈ ∂K, it can be shown that Vx′ = {x ∈ Rn|Ax = 0, xj =

0, j ∈ I}, where I = {j|x′
j = 0}. We know that F (x) = −

∑n
i=1 lnxi is a ϑ-normal

barrier for Rn
++. Therefore, F ′′(x′)−

1
2 = diag{x′

1, x
′
2, . . . , x

′
n}, and consequently Vx′ =

{F ′′(x′)−
1
2x|AF ′′(x′)−

1
2x = 0, , x ∈ Rn}.

If K = Sn×n
+ , we know F (X) = − ln det(X) is a ϑ-normal barrier for Sn×n

+ .

Now let A′ ∈ ∂K, and rank(A′) = r < n. Then F ′′(A′)−
1
2X = A′ 1

2XA′ 1
2 . We set

V = {A′ 1
2XA′ 1

2 |AA′ 1
2XA′ 1

2 = 0, X ∈ Sn×n}; just as with the positive orthant case,
it holds that VA′ = V . The following theorem tells us that this property actually
holds for all symmetric cones. We will prove this theorem in the appendix.

Theorem 3.3. Assume K is a symmetric cone in a finite-dimensional real Eu-
clidean space E and F (x) is the ϑ-normal barrier for K. If x∗ ∈ K, then Vx∗ =

{F ′′(x∗)−
1
2x|AF ′′(x∗)−

1
2x = 0, x ∈ E}.

We want to mention that F ′′(x∗)−
1
2 is well defined on the boundary of the cone,

since it is the quadratic representation of x∗ in Jordan algebra. This theorem im-
mediately implies the following corollary, which is extremely important to prove that
any limit point of the iterate generated by our algorithm satisfies the second-order
optimality condition.
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Corollary 3.1. Assume K is a symmetric cone in our optimization problem
(3.1)–(3.3); then Q is positive semidefinite on Vx∗ if and only if the linear operator

F ′′(x∗)−
1
2QF ′′(x∗)−

1
2 is positive semidefinite on {x|AF ′′(x∗)−

1
2x = 0, x ∈ E}.

4. Interior-point trust-region algorithm. In this section, we present our
interior-point trust-region algorithm for solving (3.1)–(3.3). Global first-order and
second-order convergence results are proved.

We assume F (x) is the ϑ-normal barrier for the symmetric cone K and define the
merit function as

fηk
(x) = q(x) +

1

ηk
F (x).(4.1)

In the inner iterations, fηk
(x) is decreased for a fixed ηk, while ηk is increased to

positive infinity in outer iterations. From Lemma 2.1, for any xk,j ∈ K◦ and d ∈ E,

we have that xk,j + d ∈ K◦, provided that ‖F ′′(xk,j)
1
2 d‖ ≤ αk,j < 1. It follows from

Lemma 2.2 that

F (xk,j + d) − F (xk,j) ≤ 〈F ′(xk,j), d〉 +
〈d, F ′′(xk,j)d〉

2
+

‖d‖3
xk,j

3(1 − ‖d‖xk,j
)

≤ 〈F ′(xk,j), d〉 +
〈d, F ′′(xk,j)d〉

2
+

α3
k,j

3(1 − αk,j)
.(4.2)

Therefore, we get

fηk
(xk,j + d) − fηk

(xk,j) ≤
〈d, (Q + 1

ηk
F ′′(xk,j))d〉
2

+

〈
Qxk,j + c +

1

ηk
F ′(xk,j), d

〉
+

α3
k,j

3(1 − αk,j)ηk
.(4.3)

From the above relation, it is obvious that in order to decrease fηk
(x), we can try to

minimize its upper bound given in the right-hand side of the above inequality. This
leads to the following subproblem:

min
1

2

〈
d,

(
Q +

1

ηk
F ′′(xk,j)

)
d

〉
+

〈
Qxk,j + c +

1

ηk
F ′(xk,j), d

〉
= mk,j(d)(4.4)

subject to Ad = 0,(4.5)

‖F ′′(xk,j)
1
2 d‖2 ≤ α2

k,j .(4.6)

Define

Qk,j = F ′′(xk,j)
− 1

2QF ′′(xk,j)
− 1

2 +
1

ηk
I,(4.7)

ck,j = F ′′(xk,j)
− 1

2

(
Qxk,j + c +

1

ηk
F ′(xk,j)

)
,(4.8)

Ak,j = AF ′′(xk,j)
− 1

2 ,(4.9)

and using the transformation

d′ = F ′′(xk,j)
1
2 d,(4.10)
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equations (4.4)–(4.6) can be rewritten as

min q′k,j(d
′) =

1

2
〈d′, Qk,jd

′〉 + 〈ck,j , d′〉(4.11)

subject to Ak,jd
′ = 0,(4.12)

‖d′‖2 ≤ α2
k,j .(4.13)

Instead of solving (4.11)–(4.13) exactly, we need only compute an approximate
solution d′k,j satisfying the following two inequalities:

q′k,j(d
′
k,j) ≤ −θ‖pk,j‖min

{
‖pk,j‖
βk,j

, αk,j

}
(4.14)

and

q′k,j(d
′
k,j) ≤ θλk,j min{λ2

k,j , α
2
k,j},(4.15)

where θ ∈ (0, 1
2 ), βk,j = 1+‖Qk,j‖, pk,j is the projection of ck,j onto the null space of

Ak,j , and λk,j is the least eigenvalue of (Nk,j)
∗Qk,jNk,j , Nk,j being an orthonormal

basis spanning the null space of Ak,j . We can see that inequality (4.15) makes sense
only when λk,j < 0. The two conditions (4.14) and (4.15) are common in trust-
region methods. Inequality (4.14) can be obtained at the Cauchy point and inequality
(4.15) can be obtained when the negative curvature is exploited. Projected conjugate
gradient/Lanczos-like methods are able to produce such a step at a reasonable cost
(see Gould et al. [14]).

Once d′k,j is computed, we obtain the trial step

dk,j = F ′′(xk,j)
− 1

2 d′k,j(4.16)

and define the predicted reduction in the merit function (4.1) by

Predk,j = mk,j(0) −mk,j(dk,j) = −q′k,j(d
′
k,j).(4.17)

The feasible set is denoted by �p = {x ∈ E|Ax = b, x ∈ K}. Now we are ready to
present our algorithm.

Algorithm 4.1 (an interior-point trust-region algorithm).

Step 0 Initialization. An initial point x0,0 ∈ ri{�p}, an initial trust-region
radius α0,0 ∈ (0, 1), and an initial parameter η0 > 0 are given. The
constants η′1, η

′
2, γ1, and γ2 are also given and satisfy 0 < η′1 ≤ η′2 < 1

and 0 < γ1 ≤ γ2 < 1. Two tolerance numbers ε1, ε2 ∈ (0, 1) are given.
Set k = 0 and j = 0.

Step 1 Test inner iteration termination. If ηk‖pk,j‖ < ε1 and ηkλk,j > −ε2,
set xk+1,0 = xk,j and go to Step 5.

Step 2 Step calculation. Solve (4.11)–(4.13) to obtain d′k,j, which satisfies
(4.14) and (4.15), and set dk,j by (4.16).

Step 3 Acceptance of the trial point. If xk,j + dk,j �∈ ri{�p}, set ρk,j =
−∞, xk,j+1 = xk,j and go to Step 4; otherwise compute the ratio

ρk,j =
fηk

(xk,j) − fηk
(xk,j + dk,j)

Predk,j
.(4.18)
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Let

xk,j+1 =

{
xk,j + dk,j if ρk,j ≥ η′1,

xk,j otherwise.
(4.19)

Step 4 Trust-region radius update. If ρk,j ≥ η′2, set αk,j+1 ∈ [αk,j ,∞);
if ρk,j ≥ η′1, set αk,j+1 ∈ [γ2αk,j , αk,j ]; if ρk,j < η′1, set αk,j+1 ∈
[γ1αk,j , γ2αk,j ]; increase j by 1 and go to Step 1.

Step 5 Update parameter η. Choose ηk+1 > ηk in such a way as to ensure
that ηk → +∞ when k → +∞. Increase k by 1 and go to Step 1.

We want to mention that from Lemma 2.1, our trail point will always stay inside
the feasible set if we keep αk,j less than 1. However, we believe that our current
mechanism can make the algorithm more efficient without keeping αk,j less than 1.
Although it allows the feasibility to not be achieved, sufficient descent of the merit
function can be achieved in a successful step. Just like the usual notation in the
trust-region literature, if ρk,j ≥ η′2, we call this iteration very successful; if ρk,j ≥ η′1,
we call this iteration successful; if ρk,j < η′1, we call this iteration a failure. Since pk,j
is the projection of ck,j onto the null space of Ak,j , there exists a vector y ∈ Rm such
that

pk,j = ck,j − (Ak,j)
∗y.(4.20)

Lemma 4.1. Let pk,j be given by (4.20) and

sk,j = Qxk,j + c−A∗y;(4.21)

if ηk‖pk,j‖ < 1, then sk,j ∈ K◦ and

〈xk,j , sk,j〉 ≤
1

ηk
(
√
ϑ + ϑ).(4.22)

Proof. It follows from (4.20) that

pk,j = ck,j − (Ak,j)
∗y = F ′′(xk,j)

− 1
2Qxk,j + F ′′(xk,j)

− 1
2 c

+
1

ηk
F ′′(xk,j)

− 1
2F ′(xk,j) − (AF ′′(xk,j)

− 1
2 )∗y

= F ′′(xk,j)
− 1

2 sk,j +
1

ηk
F ′′(xk,j)

− 1
2F ′(xk,j).(4.23)

Therefore, the above relation and our assumption ηk‖pk,j‖ < 1 imply that

‖F ′′(xk,j)
− 1

2 (ηksk,j + F ′(xk,j))‖ = ‖F ′′(xk,j)
1
2 (F ′′(xk,j)

−1ηksk,j − xk,j)‖

< 1.(4.24)

Here the last equality follows from Lemma 2.3. Then from Lemma 2.1, we know
that F ′′(xk,j)

−1ηksk,j ∈ K◦. It follows from Lemma 2.4 that ηksk,j ∈ K◦, and
consequently sk,j ∈ K◦.
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It follows from (4.23) that sk,j = 1
ηk

(F ′′(xk,j)
1
2 (ηkpk,j)−F ′(xk,j)). Consequently,

we have that

〈xk,j , sk,j〉 =
1

ηk
(〈F ′′(xk,j)

1
2xk,j , ηkpk,j〉 + 〈xk,j ,−F ′(xk,j)〉)

≤ 1

ηk
(‖F ′′(xk,j)

1
2xk,j‖‖ηkpk,j‖ + 〈xk,j ,−F ′(xk,j)〉)

≤ 1

ηk
(〈xk,j , F

′′(xk,j)xk,j〉
1
2 + 〈xk,j ,−F ′(xk,j)〉)

=
1

ηk
(〈xk,j ,−F ′(xk,j)〉

1
2 + 〈xk,j ,−F ′(xk,j)〉)

=
1

ηk
(
√
ϑ + ϑ).(4.25)

The last two equalities follow from Lemma 2.3.

This convergence estimate is remarkable, considering the problem is nonconvex.
We can achieve this mainly due to the special properties of the ϑ-normal barrier. From
this estimate, we can see that the barrier parameter ϑ determines the complexity of
our problem, which coincides with its role in the interior-point algorithm for convex
programming.

For the rest of this section, we will show that the stop rule for the inner itera-
tions can be satisfied in finitely many iterations. First, the following two lemmas are
indispensable for our analysis.

Lemma 4.2. (a) The map x → F ′′(x)−
1
2 is continuous on the feasible set �p.

(b) There is a constant C > 0, such that ‖F ′′(x)−
1
2 ‖ ≤ C for any x ∈ �p.

For the positive orthant case, F ′′(x)−
1
2 = X = diag{x1, x2, . . . , xn}, and for the

cone of semidefinite matrices, F ′′(X)−
1
2 ξ = X

1
2 ξX

1
2 . Therefore, part (a) is obviously

true for these two cases. For the general symmetric cone, it is still true from the
Jordan algebra point of view. We will give an explanation in the appendix. Part (b)
follows immediately form part (a) and our assumption that �p is bounded.

Lemma 4.3. There exists a positive constant C ′ such that if

αk,j ≤ min

{
(1 − η′2)θηk‖pk,j‖

1 + (1 − η′2)θηk‖pk,j‖
,
‖pk,j‖
C ′

}
,(4.26)

then the iteration {k, j} is very successful and αk,j+1 ≥ αk,j.

Proof. Let C ′ = 1 +C2‖Q‖, where C is defined as in Lemma 4.2. It follows from
the definition of βk,j and the last lemma that

βk,j = 1 + ‖Qk,j‖ ≤ C ′.(4.27)

Therefore, when αk,j ≤ ‖pk,j‖
C′ , the inequality (4.14) becomes

q′(d′k,j) ≤ −θ‖pk,j‖αk,j .(4.28)

Inequality αk,j ≤ (1−η′
2)θηk‖pk,j‖

1+(1−η′
2)θηk‖pk,j‖ < 1 ensures that xk,j + dk,j ∈ ri{�p}. It follows
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from inequalities (4.3) and (4.28) that

|ρk,j − 1| =

∣∣∣∣fηk
(xk,j) − fηk

(xk,j + dk,j) + mk,j(dk,j)

Predk,j

∣∣∣∣ ≤
(αk,j)

3

3(1−αk,j)

θαk,jηk‖pk,j‖

<

αk,j

1−αk,j

θηk‖pk,j‖
≤ 1 − η′2.(4.29)

Therefore, −(ρk,j − 1) ≤ |ρk,j − 1| ≤ 1 − η′2, and we can see that ρk,j ≥ η′2. Conse-
quently, the iteration is very successful and αk,j+1 ≥ αk,j .

Lemma 4.4. If ηk‖pk,j‖ ≥ ε for some constant ε ∈ (0, αk,0) and all j, then

αk,j ≥ min

{
γ1(1 − η′2)θε

1 + (1 − η′2)θε
,
γ1ε

C ′ηk

}
(4.30)

holds for all j.
Proof. It is easy to see that (4.30) holds for j = 0 as αk,0 > ε. Assume that the

j is the first integer such that αk,j+1 < min{ γ1(1−η′
2)ε

1+(1−η′
2)ε

, γ1ε
C′ηk

}; from the update of the

trust-region radius, we know γ1αk,j ≤ αk,j+1, and hence

αk,j < min

{
(1 − η′2)θε

1 + (1 − η′2)θε
,

ε

C ′ηk

}

< min

{
(1 − η′2)θηk‖pk,j‖

1 + (1 − η′2)θηk‖pk,j‖
,
‖pk,j‖
C ′

}
.(4.31)

From the above inequality and the last lemma, we have that αk,j+1 ≥ αk,j , which
contradicts the assumption that αk,j+1 is the first trust-region radius violating (4.30).
The contradiction shows that the lemma is true.

Now we are ready to prove that the first part of the stopping rule, i.e., ηk‖pk,j‖ <
ε1, can be satisfied in finitely many iterations.

Lemma 4.5. (a) If there are only finitely many successful iterations in each inner
algorithm, then xk,j = x∗ and ‖pk,j‖ = ‖p(x∗)‖ = 0 for all sufficiently large j.

(b) lim infj→∞ ηk‖pk,j‖ = 0.
(c) limj→∞ ηk‖pk,j‖ = 0.
Proof. (a) The mechanism of the algorithm ensures that x∗ = xk,j0 = xk,j

for all j > j0, where {k, j0} is the index of the last successful iterate. Since all
iterations are unsuccessful for sufficiently large j, we know αk,j will converge to zero.
If ‖p(x∗)‖ = ‖pk,j0‖ > 0, Lemma 4.4 implies that αk,j will be bounded from zero.
This contradiction shows that ‖pk,j0‖ has to be zero.

(b) For the purpose of deriving contradiction, we assume that for all j, ηk‖pk,j‖ ≥
ε for some ε > 0. From Lemma 4.4 we know that αk,j ≥ min{ γ1(1−η2)θε

1+(1−η2)θε
, γ1ε
C′ηk

} for all

j. We consider all successful iterations {k, j}; then

fηk
(xk,j) − fηk

(xk,j + dxk,j
) ≥ η′1Predk,j

≥ η′1θ‖pk,j‖min

{
‖pk,j‖
βk,j

, αk,j

}
;(4.32)

here the last inequality follows by inequality (4.14). From the above analysis, we

know η′1θ‖pk,j‖min{‖pk,j‖
βk,j

, αk,j} ≥ σ > 0; here σ is some positive constant number



74 YE LU AND YA-XIANG YUAN

that is independent of j. If we have infinitely many successful iterations, the difference
between fηk

(xk,0) and fηk
(xk,j) will be unbounded when j → +∞. This contradicts

the assumption that fηk
(x) is bounded from below on the feasible set. Hence, we

conclude that lim infj→∞ ηk‖pk,j‖ = 0.
(c) For the purpose of deriving a contradiction, assume there is a subsequence

of successful iterations {xk,ji} such that ηk‖pk,ji‖ ≥ 2ε for some ε > 0 and for all
{ji}. Our part (b) ensures the existence for each {ji} of a first successful iteration
li = l(ji) > ji such that ηk‖pk,li‖ < ε. We thus obtain another subsequence of
successful iterations {li} such that ηk‖pk,j‖ ≥ ε for ji ≤ j < li and ηk‖pk,li‖ < ε.
Define κ = {j ∈ S|ji ≤ j < li}; here S indicates the successful iterations. For j ∈ κ,
from inequality (4.32) we have

fηk
(xk,j) − fηk

(xk,j+1) ≥ η′1θ‖pk,j‖min

{
‖pk,j‖
βk,j

, αk,j

}

≥ η′1θ
ε

ηk
min

{
ε

ηkβk,j
, αk,j

}
.(4.33)

Since the sequence fηk
(xk,j) is monotonically decreasing and bounded from below,

it is convergent. Therefore, the left-hand side of (4.33) must tend to zero when j tends
to infinity. This gives that limj→∞,j∈κ αk,j = 0. As a consequence, the second term
dominates the minimum in (4.33) and we obtain that for j ∈ κ sufficiently large,

αk,j ≤
2ηk(fηk

(xk,j) − fηk
(xk,j+1))

η′1θε
.(4.34)

We then deduce from this bound that, for i sufficiently large,

‖xk,ji − xk,li‖ ≤
li−1∑

j=ji,j∈κ

‖dxk,j
‖ =

li−1∑
j=ji,j∈κ

‖F ′′(xk,j)
− 1

2 d′xk,j
‖

≤
li−1∑

j=ji,j∈κ

‖F ′′(xk,j)
− 1

2 ‖‖d′xk,j
‖ ≤

li−1∑
j=ji,j∈κ

Cαk,j

≤ C

li−1∑
j=ji,j∈κ

2ηk(fηk
(xk,j) − fηk

(xk,j+1))

η′1θε

=
2Cηk(fηk

(xk,ji) − fηk
(xk,li))

η′1θε
.(4.35)

Here the third inequality follows from part (b) of Lemma 4.2, and the fourth inequality
follows from inequality (4.34). Because fηk

(xk,j) is monotonically decreasing for j and
bounded from below, it is convergent. Consequently, fηk

(xk,ji) − fηk
(xk,li) tends to

zero when i → +∞. We therefore obtain that ‖xk,ji − xk,li‖ tends to zero when
i → +∞. Without loss of generality, we can assume x∗ to be the common limit point
of sequences {xk,ji}∞i=1 and {xk,li}∞i=1. Since the sequences of our algorithm make the
value of fηk

(x) decrease, the limit point x∗ must be in the interior of the feasible set
�p. We know

‖pk,ji − pk,li‖ ≤ ‖pk,ji − p(x∗)‖ + ‖p(x∗) − pk,li‖.(4.36)
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From part (a) of Lemma 4.2, we know that ck,j is continuous for x. Since pk,j
is the projection of ck,j over the null space of Ak,j , pk,j is also continuous for x.
Therefore, the right-hand side of inequality (4.36) will converge to zero when i tends to
infinity. But, on the other hand, we know ηk‖pk,ji −pk,li‖ ≥ ηk‖pk,ji‖−ηk‖pk,li‖ ≥ ε.
Therefore, we get a contradiction, which means our initial assumption that ηk‖pk,j‖
does not converge to zero cannot be true. This completes our proof.

Now we prove that the second part of the stop rule, ηkλk,j > −ε2, can also be
satisfied in finitely many iterations.

Lemma 4.6. For every fixed k, lim supj→∞ λk,j ≥ 0.

Proof. For the purpose of deriving a contradiction, we assume that λk,j ≤ λ∗ for
some λ∗ < 0 and all j. From inequality (4.15) we know that

Predk,j = −q′(d′xk,j
) ≥ −θλk,j min{λ2

k,j , α
2
k,j} ≥ −θλ∗ min{λ2

∗, α
2
k,j}.(4.37)

Therefore, we get

|ρk,j − 1| =

∣∣∣∣fηk
(xk,j) − fηk

(xk,j + dk,j) + mk,j(dk,j)

Predk,j

∣∣∣∣ ≤
(αk,j)

3

3(1−αk,j)

−ηkθλ∗ min{λ2
∗, α

2
k,j}

.

(4.38)

From this inequality, there exists a constant δ1 > 0 such that if αk,j < δ1, then
|ρk,j −1| ≤ 1−η′2, that is, ρk,j ≥ η′2, which means this iteration is very successful and
αk,j+1 ≥ αk,j . Now we assume {k, j0} is the first iteration such that αk,j0 ≤ δ1; then
from our above analysis, we know that αk,j ≥ min{γ1δ1, αk,j0} := δ2 for all j ≥ j0.
Consequently,

fηk
(xk,j) − fηk

(xk,j + dxk,j
) ≥ η′1Predk,j ≥ −η′1θλ∗ min{λ2

∗, α
2
k,j}

≥ −η′1θλ∗ min{λ2
∗, δ

2
2} > 0(4.39)

whenever {k, j} is successful. If there are infinitely many successful iterations after
{k, j0}, (4.39) contradicts the fact that fηk

(x) is bounded from below. If there are
finitely many successful iterations, the mechanism of our algorithm ensures that αk,j

converges to zero. But it again contradicts αk,j ≥ min{γ1δ1, αk,j0} := δ2 for all j ≥ j0.
Hence our original assumption that there exists λ∗ < 0 such that for all j, λk,j ≤ λ∗
cannot be true. This completes the proof.

From Lemma 4.6 and part (c) of Lemma 4.5, it is obvious that the stopping rule
of our inner algorithm can be satisfied in finite many iterations.

Theorem 4.1. For every fixed ηk, Step 1 through Step 4 can be terminated in
finitely many iterations.

Finally, we can derive that any limit point of the sequences our algorithm gener-
ates satisfies both the first-order and the second-order optimality conditions.

Theorem 4.2. Assume x∗ is any limit point of the sequences {xk,0}∞k=0 our algo-
rithm generates; then x∗ satisfies both the first-order and the second-order optimality
conditions for our problem (3.1)–(3.3).

Proof. We assume that sk+1,0 is defined by (4.21). From Lemma 4.1, we know

〈xk+1,0, sk+1,0〉 ≤
1

ηk
(ϑ +

√
ϑ).(4.40)
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The above inequality implies that ηk → ∞ as k → ∞. Hence, any limit point of the
sequences {xk,0}∞k=0 must satisfy the first-order optimality condition. Moreover, we
know that

λk+1,0 ≥ −ε2
ηk

,(4.41)

which implies that

lim inf
k→∞

λk,0 ≥ 0.(4.42)

The above inequality, the definition of λk,j , and our continuity assumption show that

F ′′(x∗)−
1
2QF ′′(x∗)−

1
2 is positive semidefinite on the vector space {x|AF ′′(x∗)−

1
2x =

0, x ∈ E}. From Corollary 3.1, we know x∗ satisfies the second-order optimality
condition.

5. Solve the large-scale trust-region subproblem. In this section, we show
how to use our algorithm to solve the trust-region subproblem exactly and approxi-
mately. Numerical results are presented.

Consider the following standard trust-region subproblem:

min q(x) =
1

2
〈x,Qx〉 + 〈c, x〉(5.1)

subject to ‖x‖ ≤ Δ,(5.2)

where ‖.‖ is the �2-norm. By introducing a new variable xn+1, we can transform this
problem into the following nonlinear second-order cone programming:

min q(x) =
1

2
〈x,Qx〉 + 〈c, x〉(5.3)

subject to xn+1 = Δ,(5.4)

n∑
i=1

x2
i ≤ x2

n+1.(5.5)

Obviously, this is a special symmetric cone programming with A = (0 · · · 0, 1) and
K = {x ∈ Rn+1 :

∑n
i=1 x

2
i ≤ x2

n+1 and xn+1 ≥ 0}. If we want to use Algorithm 4.1
to solve (5.3)–(5.5), we need to choose a method of solving (4.11)–(4.13). Since
we are interested in solving large-scale problems, this motivates us to choose the
methods that rely only on matrix-vector product. The first method in this class is
the Steihaug–Toint truncated conjugate gradient method, which is due to Toint [26]
and Steihaug [23]. And the adaptation to handle additional affine constraints can be
found in Gould, Hribar, and Nocedal [15]. Here we give the version of the algorithm
for solving (4.11)–(4.13).

Algorithm 5.1 (the Steihaug–Toint method with affine constraints).
Step 0 Initialization. For fixed {k, j} in (4.11)–(4.13), let d′0 = 0, g0 = ck,j,

v0 = PAk,j
ck,j, and p0 = −v0. For h = 0, 1, . . . until convergence,

perform the iteration.
Step 1 Check the negative curvature. Set κh = 〈ph, Qk,jph〉. If κh ≤ 0,

compute σh as the positive root of ‖d′h + σph‖ = αk,j, set d′h+1 = d′h +
σhph, and stop. End if
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Step 2 Check the boundary constraints. Set βh = 〈gh, vh〉/κh. If ‖d′h +
βhph‖ ≥ αk,j, compute σh as the positive root of ‖d′h + σph‖ = αk,j, set
d′h+1 = d′h + σhph, and stop. End if

Step 3 Perform the conjugate gradient step. Set d′h+1 = d′h+βhph, gh+1 =

gh + βhQk,jph, vh+1 = PAk,j
gh+1, and ph+1 = −vh+1 + 〈gh+1,vh+1〉

〈gh,vh〉 ph.

Here PAk,j
is the projection onto the null space of Ak,j .

There are several advantages of this algorithm:
(1) It requires only matrix-vector product.
(2) It usually terminates very fast.
(3) It is applicable to problems with affine constraints.
(4) If the objective function is convex, the computed approximation solution

gives at least half of the optimal reduction (Yuan [32]).
This Steihaug–Toint method is basically unconcerned with the trust region until

it blunders into its boundary and stops. This is rather unfortunate, particularly, as
considerable experience has shown that this frequently happens during the first few
iterations when a negative curvature is present, causing the following disadvantages
to the algorithm:

(A) Even if the problem is convex, optimal solution cannot be expected, except
when the solution lies interior to the trust region.

(B) If it blunders into the boundary or a negative curvature is present too early,
the approximate solution is not very good.

(C) It cannot handle the hard case.
(D) Optimal solution for the nonconvex problem is normally impossible for this

algorithm.
Can we remove these disadvantages of Algorithm 5.1 while retaining its advan-

tages? The answer is yes. After transforming (5.1)–(5.2) into (5.3)–(5.5), we use
Algorithm 4.1 to solve it. In each iteration we use the Steihaug–Toint conjugate gra-
dient method to solve (4.11)–(4.13). Since we basically repeat using Algorithm 5.1
in each iteration, we can keep all the advantages of Algorithm 5.1 as long as the
number of iterations is not too big. It turns out that the number of iterations is very
reasonable from the numerical results presented in this section. What can we achieve
by doing this? We can get at least a first-order critical point of (5.3)–(5.5). This
gives an optimal solution of (5.1)–(5.2) if Q is positive semidefinite. Thus we have
removed (A). Algorithm 5.1 sometimes cannot give us a good approximate solution
because it hits the boundary too early. By adding a ϑ-norm barrier to the quadratic
model, we can prevent the iterates to reach the boundary too soon. This idea can
give us a much better approximate solution, which is verified by the numerical results
in this section. Therefore, we have removed (B). We know that Algorithm 5.1 cannot
handle the hard case. If c = 0 and Q is indefinite, the method will terminate at
d′ = 0 with no decrease in the model. This cannot happen in our new framework.
For Algorithm 4.1, a first-order critical point is always ensured even if the problem
is in the hard case. Therefore, we have removed (C). Moreover, Algorithm 4.1 can
be improved to find the optimal solution of (5.1)–(5.2) for all the cases, including the
nonconvex case and the hard case. We first need the following lemma, which is well
known in the trust-region literature.

Lemma 5.1. Any global minimizer x∗ of (5.1)–(5.2) satisfies the equation

(Q + μ∗I)x∗ = −c;(5.6)

here Q + μ∗I is positive semidefinite, μ∗ ≥ 0, and μ∗(‖x∗‖ − Δ) = 0.
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For a proof, see, e.g., Section 7.2 of Conn, Gould, and Toint [6].
The following algorithm removes (D).
Algorithm 5.2 (an algorithm for optimal solution).

Step 0 Make Q positive semidefinite Find s, the smallest eigenvalue of Q
and v, its corresponding eigenvector. If s < 0, set Q = Q− sI, end if.

Step 1 Solve new model. Use Algorithm 4.1 to solve (5.3)–(5.5) with Q pos-
itive semidefinite to get solution x0.

Step 2 Go back to original model. If s ≥ 0, set x = x0, end if. If s < 0 and
‖x0‖ = Δ, set x = x0, end if. If s < 0 and ‖x0‖ < Δ, set x = x0 + σv,
σ is chosen so that ‖x0 + σv‖ = Δ, end if.

We claim that x is an optimal solution of (5.1)–(5.2). If s ≥ 0, it is obvious. If
s < 0 and ‖x0‖ = Δ, it follows from the fact that x0 is an optimal solution of the
new model with Q positive semidefinite and Lemma 5.1. If s < 0 and ‖x0‖ < Δ,
μ∗ = 0 in (5.6) of Lemma 5.1 and consequently Qx0 = −c for the new convex Q.
And since Qv = 0 for the new Q, Qx = Q(x0 + σv) = −c. From Lemma 5.1, we
know that x is an optimal solution of (5.1)–(5.2). Therefore, we have removed all the
disadvantages of the Steihaug–Toint method, while our algorithms mainly rely on the
conjugate gradient method. For finding the optimal solution of the problem when it
is nonconvex, we need to compute the least eigenvalue. However, those eigenvalue-
based algorithms like those of Sorensen [22], Rojas, Santos, and Sorensen [21], and
Rendl and Wolkowicz [19] require computing sequences of least eigenvalues, while we
compute the least eigenvalue only once. As pointed out to us by a referee, Griffin and
Gill [16] independently applied a truncated conjugate gradient algorithm to a shifted
quadratic function to solve the trust-region subproblem.

We need to mention two implementation techniques when we use Algorithm 5.1
to solve (4.11)–(4.13) in each iteration.

We can see that the main computation in this algorithm is the product of the ma-
trix Qk,j with a vector. In practice, we do not form Qk,j explicitly because it is expen-

sive and destroys the sparse structure of Q. Since Qk,j = F ′′(xk,j)
− 1

2QF ′′(xk,j)
− 1

2 +
1
ηk
I, we need to compute the product of the matrix F ′′(xk,j)

− 1
2 with a vector, which

can be done efficiently. For F (x) = − ln(x2
n+1 −

∑n
i=1 x

2
i ), F ′′(x)−1 and F ′′(x)−

1
2

have the following explicit forms:

F ′′(x)−1 =
1

2

[
(x2

n+1 − yT y)I + 2yyT 2xn+1y
2xn+1y

T x2
n+1 + yT y

]
,(5.7)

F ′′(x)−
1
2 =

√
2

2

[√
x2
n+1 − yT yI + yyT√

x2
n+1−yT y+xn+1

y

yT xn+1

]
,(5.8)

where y = (x1 . . . xn)T . For more details about the second-order cone and its barrier,
see, e.g., Alizadeh and Goldfarb [2] or Faybusovich and Tsuchiya [10].

The first technique is that we do not have to formulate F ′′(x)−
1
2 explicitly for

computing the product of the matrix F ′′(xk,j)
− 1

2 with a vector. Since yyTu = 〈y, u〉y
for any vector u ∈ Rn, the computation needs only O(n) arithmetic operations.

The second technique is for the projection PAk,j
. For any vector u ∈ Rn+1,

PAk,j
u = u−AT

k,j(Ak,jA
T
k,j)

−1Ak,ju

= u− F ′′(xk,j)
− 1

2AT (AF ′′(xk,j)
−1AT )−1AF ′′(xk,j)

− 1
2u.(5.9)
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Because A = (0 . . . 0, 1), AF ′′(xk,j)
−1AT is just the (n+1, n+1) entry of F ′′(xk,j)

−1.

The only thing left is to compute the product of F ′′(xk,j)
− 1

2 with a vector, which has
been taken care of by O(n) arithmetic operations.

By the above two techniques, each iteration of our algorithm takes hardly more
extra work than the Steihaug–Toint truncated conjugate gradient method.

When applying Algorithm 4.1 to (5.3)–(5.5), we change the stopping rule for the
inner iterations to make the algorithm more efficient. We remind the reader that there
are two conditions of our stopping rule: (a) ηk‖pk,j‖ < ε1 and (b) ηkλk,j > −ε2 for
some ε1, ε2 ∈ (0, 1). We ignore condition (b), since a first-order critical point is good
enough for our purpose. For condition (a), we need to change it a little because it is
independent of whether or not optimality is nearly achieved. In practice, we directly
follow the definition of the first-order optimality condition. If xk,j is a first-order
critical point, sk,j = Qxk,j + c−A∗y should be inside the second-order cone for some
y. In our case A = (0 . . . 0, 1) and all of the entries in the last row of Q are zeros.
Therefore, we set y = −‖Qxk,j + c‖ such that sk,j is inside the second-order cone.
Then we stop the inner iteration as soon as we find xk,j such that 〈xk,j , sk,j〉 ≤ ε

ηk

for some constant ε. Lemma 4.1 suggests that ε =
√
ϑ + ϑ is a good choice. For

the second-order cone, ϑ = 2. From our practical experience, it works very well for
convex problems. In the nonconvex case, it seems that this stopping rule works for
some problems but not all of them, which remains to be investigated. The algorithm
is halted as soon as xk,j is found such that 〈xk,j , sk,j〉 ≤ 10−4. In Algorithm 4.1,
η′1 = 0.05 and η′2 = 0.9 are used and the trust region is updated according to the usual
rule. If ρk,j ≥ η′2, set αk,j+1 = max(αk,j , 2‖d′k,j‖); if ρk,j ∈ [η′1, η

′
2), set αk,j+1 = αk,j ;

if ρk,j < η′1, set αk,j+1 = 1
2αk,j . The initial value of parameter η is set to be 1

Δ and
is updated by ηk+1 = 10ηk. In each iteration, the Steihaug–Toint conjugate gradient

method (Algorithm 5.1) is stopped as soon as ‖vh‖ ≤ 10−
3
2 ‖v0‖ if it does not hit the

boundary and negative curvature is not present before that. We decide not to put
an upper bound on the number of Steihaug–Toint iterations, which is denoted by h
in Algorithm 5.1. In this way, for the convex problems, we will be able to know the
number of iterations our algorithm needs to get an optimal solution if we solve each
trust-region subproblem approximately, which is measured by ‖vh‖ ≤ 10−

3
2 ‖v0‖.

The algorithms are tested in MATLAB 7.0 on a Linux system. We run our ex-
periments on a Gateway computer with a Pentium IV 3.2G processor and 1G RAM.
We compare our results with a software called “Newtrust4b” based on Rendel and
Wolkowicz [19]. We choose “Newtrust4b” because it is one of the best software pack-
ages for finding the optimal solution of the trust-region subproblem and because it is
also implemented in MATLAB code. For the test problems, Q and c are randomly
generated with entries uniformly distributed on (0,1). We set the trust-region radius
Δ = 1. For different radiuses, the computation time and the number of iterations may
vary, but they vary reasonably. In Tables 1–5, n is the dimension of the problems,
d is the density of Q; i.e., Q has d ∗ n2 nonzero entries. The data in those columns
under the algorithms’ names is the computational time by seconds. Sometimes, the
MATLAB timing is dependent on the CPU load. Our timings have been averaged to
eliminate this dependency. And its is the number of iterations of our algorithm. ST
its is the total number of Steihaug–Toint iterations used during the whole computa-
tion. From Algorithm 5.1, we can see that the dominating cost of each Steihaug–Toint
iteration is the product of Qk,j and ph. Therefore, ST its gives us the total number
of the matrix-vector products used by our algorithm. We first test some convex prob-
lems. To make the problem convex, we let Q = Q − sI if s, the least eigenvalue of
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Table 1

Convex singular problems.

n d Newtrust4b Algorithm 4.1 its ST its
2500 1 57 3 10 66
5000 0.5 1328 67 28 156
10000 0.05 284 16 12 42
20000 0.01 240 10 9 19
100000 0.0001 181 5 8 15
200000 101 band 248 17 7 11

Table 2

Q is sparse with d = 0.03.

n Newtrust4b Algorithm 5.2 Eigenvalue time its ST its
4000 8 6 4 10 31
8000 74 68 58 22 53
12000 156 143 121 21 53
16000 303 278 239 21 54
20000 356 312 253 20 48

Q, is negative. In this way, the problem is convex and nearly singular. To show that
our algorithm can handle the singular problems, we set Q =

[
Q 0
0 0

]
to make it even

more singular. Now the dimension of Q is n + 1, and so is c. Since the problems are
convex, Algorithm 4.1 gives us optimal solutions.

We can see that Algorithm 4.1 outperforms Newtrust4b for the convex singular
problems. The success of Algorithm 4.1 in this case is a good basis for Algorithm 5.2.
If the problem is nonconvex or if we do not know whether or not our problem is
convex, we have to use Algorithm 5.2 to get an optimal solution. The following two
groups of results show us the performance of Algorithm 5.2.

We can see that Algorithm 5.2 is competitive with Newtrust4b in both sparse
and dense cases. The eigenvalue time is the computational time cost by computing
the least eigenvalue of Q in Algorithm 5.2, which becomes dominant when the prob-
lem becomes large. Fortunately, we have reduced this part to the minimum level in
Algorithm 5.2 (we need only compute the least eigenvalue once for all). Moreover,
the number of iterations and ST iterations of our algorithm is independent of the
dimension of the problems.

So far, we have been focusing on finding the optimal solution of the trust-region
subproblem. But if the problem is nonconvex, Algorithm 4.1 can deliver us only an
approximate solution. How good is Algorithm 4.1 for nonconvex problems? From our
practical experience, we have to say that the performance of Algorithm 4.1 on finding
an approximate solution for nonconvex problems is not as stable as its performance
on finding exact solution for convex problems. This is reflected by the fact that
the convergence is sensitive to the inner iteration stopping rule. The inner iteration

stopping rule, 〈xk,j , sk,j〉 ≤
√
ϑ+ϑ
ηk

, works for some of our testing problems but not
for all of them. For those test problems where Algorithm 4.1 has good performance,
the number of iterations is around 40. For those test problems where Algorithm 4.1
has bad performance, the number of iterations can reach over 100. The change of

stopping rule of inner iteration (like from 〈xk,j , sk,j〉 ≤
√
ϑ+ϑ
ηk

to 〈xk,j , sk,j〉 ≤ 1
ηk

) can
significantly affect the performance of the algorithm on the same test problem. This
phenomenon remains to be investigated. On the positive side, even for the problems
where Algorithm 4.1 has bad performance, the convergence slows down only when ηk
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Table 3

Q is dense with d = 1.

n Newtrust4b Algorithm 5.2 Eigenvalue time its ST its
1000 9 3 2 15 144
2000 14 7 4 22 141
3000 36 18 11 20 154
4000 147 71 56 22 144
5000 323 145 127 19 164

Table 4

Nonconvex singular problems.

n d Algorithm 4.1 Accuracy its ST its
3000 1 1 90% 5 10
6000 1 5 90% 5 10
10000 0.03 3 95% 3 6
20000 0.03 11 95% 3 6
100000 0.0001 2 99% 3 4
200000 101 band 8 99% 3 4

becomes large and our solution is close to the optimal solution. Here we give a group
of examples to show that Algorithm 4.1 can deliver us a good approximate solution
at a relatively low cost. For each of these problems, we first use Algorithm 5.2 to
get an optimal solution and consequently the best possible reduction. Then we use
Algorithm 4.1 to solve it and stop the algorithm when 90% of the optimal reduction
is achieved. Q is randomly generated with entries uniformly distributed on (0,1). We
have check that Q is indefinite. To show the performance of our algorithm on the
singular problems, we set Q =

[
Q 0
0 0

]
. Therefore, the actual dimension of Q in Table

4 is n + 1.
We can see that after a few Steihaug–Toint iterations, Algorithm 4.1 can deliver

us a good approximate solution. Therefore, we have achieved our goal of improving
the solution quality of the Steihaug–Toint method while keeping its computational
advantages.

In summary, techniques developed in this section give us two algorithms for solv-
ing the trust-region subproblem. Algorithm 5.2 gives us an optimal solution for both
convex and nonconvex problems. Algorithm 4.1 gives us a good approximate solution
for nonconvex problems and an optimal solution for convex problems.

6. Further numerical results and implementation issues. In this section,
we discuss some implementation issues for solving general symmetric cone program-
ming. We also present some numerical results of solving a class of quadratic program-
ming.

To solve the general symmetric cone programming, we have to handle three basic
implementation issues. The first issue is to find a starting point in our feasible set.
This feasible set has been well studied in the interior-point algorithm literature. We
can use the same technique to find a feasible starting point for our problem. The
second issue is to handle affine constraints. This requires us either to solve the nor-
mal equations or to project iterates onto the null space of Ak,j . Gould, Hribar, and
Nocedal [15] is a good reference for handling this issue. The third issue is about

preconditioning. We recall that Qk,j = F ′′(xk,j)
− 1

2QF ′′(xk,j)
− 1

2 + 1
ηk
I. When we are

getting close to the optimal solution, ηk is getting large, and consequently the right
part 1

ηk
I is about to disappear. At the same time, the iterate xk,j is getting close
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Table 5

Q is positive definite with density d = 1.

n its ST its Algorithm 4.1
1000 67 529 4
2000 75 799 17
3000 81 777 40
4000 71 630 75
5000 70 671 109

to the boundary. Therefore, F ′′(xk,j)
− 1

2 becomes nearly singular, which can make
the condition number of Qk,j large. As we know, the convergence behavior of the
conjugate gradient method is strongly dependent on the conditioning of Qk,j . There-
fore, the appropriate preconditioning technique is necessary to make the algorithm
efficient.

Handling these implementation issues is beyond the scope of this paper. However,
to see how our algorithm performs on solving problems other than the trust-region
subproblem, we present some numerical results for a class of quadratic programming,
which is minimization of a strictly convex quadratic objective function over the pos-
itive orthant. This problem is bounded from below. We use the vector e with every
entry 1 as our starting point. Q is randomly generated with entries uniformly dis-
tributed on (0,1). We make the problem convex by letting Q = Q + (−s + 1)I if s,
the least eigenvalue of Q, is negative. c is randomly generated with entries uniformly
distributed on (−1, 0). In this way, the problem will have nontrivial solution. In
each step, the conjugate gradient method is stopped if the iterate hits the boundary
or ‖gh‖ ≤ 10−3/2‖g0‖. The inner iteration is stopped when we find xk,j such that

sk,j = Qxk,j +c belongs to positive orthant and 〈xk,j , sk,j〉 ≤ n+
√
n

ηk
. The algorithm is

halted as soon as xk,j is found such that 〈xk,j , sk,j〉 ≤ 10−4. All other implementation
techniques are similar to those we discussed in section 5. The following is a group of
results.

The number of iterations as well as the total number of Steihaug–Toint iterations
are independent of the dimension of problems, which makes our algorithm have prac-
tical potential for solving large-scale problems. One practical observation we want to
mention is that the computational time of reducing 〈xk,j , sk,j〉 from 10−3 to 10−4 is
even more than the computational time of reducing it from the starting value to 10−3.
This is caused by the fact that the convergence of the conjugate gradient algorithm
considerably slows down when the iterate is close to optimal solution and consequently
the boundary, which agrees with our theoretical analysis above. Therefore, appropri-
ate preconditioning is indispensable to make the algorithm more efficient. Since it
has been shown in section 5 that Algorithm 4.1 works well for solving the singular
problems, an alternative way is to use it to solve the trust-region subproblem when
the iterate is close to the boundary of the positive orthant. Which way is better
remains to be investigated.

7. Concluding remarks. In this paper, we have shown that combining the
techniques developed in trust-region literature (especially Conn, Gould, and Toint
[6]) with those techniques in interior-point method literature can be very powerful
both in theoretical analysis and practical implementation. For further theoretical
research, Lu and Yuan [17] have recently proved that the complexity of an interior-
point trust-region algorithm for convex programming is polynomial time. On the
practical side, the numerical results presented in this paper show that our algorithm
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has practical potential. But a lot more work needs to be done to turn this method
into a practical software package for solving general symmetric cone programming.

Appendix. In this appendix, we describe the face VA′ for the semidefinite case.
We use the Jordan algebra technique to prove Theorem 3.3 and give an explanation
why Lemma 4.2 holds for general symmetric cone.

If K = Sn×n
+ , we know F (X) = − ln det(X) is a ϑ-normal barrier for Sn×n

+ .

Let A′ ∈ ∂K, and rank(A′) = r < n; then F ′′(A′)−
1
2X = A′ 1

2XA′ 1
2 . We set V =

{A′ 1
2XA′ 1

2 |AA′ 1
2XA′ 1

2 = 0, X ∈ Sn×n}. In section 3, we have claimed that VA′ = V .
Now we give a proof.

Proof. First, we need to characterize VA′ . Since A′ is a semidefinite matrix,
then we can find an orthogonal matrix U , such that U−1A′U = D, where D =
diag{λ1, . . . , λr, 0, . . . , 0} with λi > 0, i = 1, . . . , r.

Let C = diag{0, . . . , 0, 1, . . . , 1} be the matrix whose first r diagonal entries are
0 and the last n − r diagonal entries are 1, and let Q′ = UCU−1. Then Q′ is a
nonzero positive semidefinite matrix and 〈Q′, A′〉 = 〈UCU−1, UDU−1〉 = 〈C,D〉 = 0.
Furthermore, for any positive semidefinite n × n matrix X, 〈Q′, X〉 ≥ 0. Therefore,
the hyperplane H = {X ∈ Sn×n|〈Q′, X〉 = 0} isolates Sn×n

+ and contains A′. We
claim that

�A′ = {X ∈ Sn×n
+ |AX = b, 〈Q′, X〉 = 0}.

To see that A′ is a relative interior point of �A′ , we need only show that A′ is an
interior point of � = {X ∈ Sn×n

+ |〈Q′, X〉 = 0}. The map X → Y = U−1XU is a
nondegenerate linear transform which maps Sn×n

+ onto itself, maps Q′ onto C, and

maps A′ onto D. Then � is mapped onto �
′

= {Y ∈ Sn×n
+ |〈C, Y 〉 = 0}. Clearly,

Y must have the last n − r rows and last n − r columns be 0. The upper left r × r
submatrix Y ′ of Y can be arbitrary positive semidefinite matrix, Y = ( Y

′
0

0 0
). It is easy

to see that �
′
contains D in its interior. Since Y → X = UY U−1 is a nondegenerate

linear transform, which maps D onto A′ and �
′

onto �, then A′ is an interior point
of �. Therefore A′ is a relative interior point of �A′ . Then

VA′ = {X ∈ Sn×n|AX = 0, 〈Q′, X〉 = 0}.

To show that VA′ = V, we need only verify that

V
′
= {A′ 1

2XA
1
2 |X ∈ Sn×n

+ } = � = {X ∈ Sn×n
+ |〈Q′, X〉 = 0}.

For all F ∈ �, since � = U�
′
U−1,

F = U

(
Y

′
0

0 0

)
U−1

for some r × r positive semidefinite matrix Y ′. Let

X = U

(
D

′
Y

′
D

′
0

0 0

)
U−1;

here D′ = diag{
√
λ1, . . . ,

√
λr}−1, λi > 0, i = 1, . . . , r are the eigenvalues of A′. Then

A′ 1
2XA′ 1

2 =
(
Udiag{

√
λ1, . . . ,

√
λr, 0, . . . , 0}U−1

)(
U

(
D

′
Y

′
D

′
0

0 0

)
U−1

)
,
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(
Udiag{

√
λ1, . . . ,

√
λr, 0, . . . , 0}U−1

)
= U

(
Y

′
0

0 0

)
U−1 = F.

We conclude that � ⊂ V ′. It is easy to see that dim(�) = dim(V ′) = r(r+1)
2 , and we

get � = V ′. Therefore,

{X ∈ Sn×n|〈Q′, X〉 = 0} = Aff(�) = Aff(V ′) = {A′ 1
2XA′ 1

2 |X ∈ Sn×n},

which implies that

VA′ = V = {F ′′(A′)−
1
2X|AF ′′(A′)−

1
2X = 0, X ∈ Sn×n}.

Before we prove Theorem 3.3, we introduce some notation of Jordan algebra.
Since every symmetric cone K can be realized as a cone of squares in an appropriated
Euclidean algebra (see Faraut and Koranyi [9] for details), we can use the Jordan
algebra technique to prove Theorem 3.3.

Let V be an Euclidean Jordan algebra and Ω be a cone of invertible squares in
V . We define 〈x, y〉 = tr(x ◦ y) as the canonical scalar product in V . Let F (x) =
− log det(x), x ∈ Ω. Then F ′′(x) = P (x)−1; here F ′′(x) is the Hession of F evaluated
at x ∈ Ω with respect to the canonical scalar product 〈, 〉. P (x) is the quadratic
representation of x. We assume rank(V ) = r. When x is on the boundary ∂Ω of Ω,
rank(x) = j < r.

In the following, we fix a Jordan frame c1, . . . , cr and denote ej = c1 + · · · + cj ,
V (j) = V (ej , 1). We denote by Ωj the symmetric cone associated with the subspace
V (j), i.e., the interior relative to V (j). Then Ωj ⊂ ∂Ω. The following lemma charac-
terizes the boundary of symmetric cone. For a proof, see Proposition IV.3.1 in Faraut
and Koranyi [9].

Lemma A.1. For x in Ω the following properties are equivalent:
(a) The rank of x is j.
(b) x ∈ kΩj for some k in K = G ∩O(V ); here G is the connected component

of the identity in G(Ω) and G(Ω) denotes the set of automorphisms of Ω.
(c) The rank of P (x) is equal to the dimension of V (j).

Now we assume x∗ ∈ Ω and rank(x∗) = j. From Lemma A.1, we know that
x∗ ∈ kΩj for some k in K. It can be verified that Vx∗ = kV (j). Now we are ready to
prove Theorem 3.3.

Proof of Theorem 3.3. From the above analysis, we need only prove P (x∗)
1
2V =

kV (j). Since P (x∗) is a positive semidefinite linear operator, P (x∗)
1
2V = P (x∗)V .

Therefore we need only prove P (x∗)V = kV (j). From part (b) of Lemma A.1, we

know x∗ = k
∑j

i=1 λici = kP (a)ej , with a =
∑j

i=1

√
λici +

∑r
i=j+1 ci. Then P (x∗) =

p(kP (a)ej) = kP (P (a)ej)k
∗ = kP (a)P (ej)P (a)k∗; here the second equality follows

by Proposition III.5.2 in Faraut and Koranyi [9] and the last equality follows by
Proposition II.3.3 in Faraut and Koranyi [9]. Since P (ej) is the orthogonal projection
onto V (j) and P (a) maps V (j) onto V (j), it is easy to see that P (x∗)V ⊂ kV (j). Since
from part (c) of Lemma A.1, we know rank(P (x∗)) = rank(V (j)) = rank(kV (j)), we
conclude that P (x∗)V = kV (j). We complete the proof.

Part (a) of Lemma 4.2 holds only because F ′′(x∗)−
1
2 = P (x∗)

1
2 and P (x∗) is the

quadratic representation of x∗.
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