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Abstract. An interior-point trust-region algorithm is proposed for min-
imization of a convex quadratic objective function over a general convex
set. The algorithm uses a trust-region model to ensure descent on a suitable
merit function. The complexity of our algorithm is proved to be as good as
the interior-point polynomial algorithm.
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1 Introduction

The idea of interior-point trust-region algorithm can be traced back to
Dikin[3] where an interior ellipsoid method was developed for linear prob-
lems. Recently, Tseng[8] produced a global and local convergence analysis
of Dikin’s algorithm for indefinite quadratic programming. We also refer
Absil and Tits[1] for this direction. Ye[9] developed an affine scaling al-
gorithm for indefinite quadratic programming by solving sequential trust-
region subproblem. Global first-order and second-order convergence results
were proved, and later enhanced by Sun[7] for the convex case. In the trust-
region literature, Conn, Gould and Toint [2] developed a primal barrier trust-
region algorithm, which has been recently extended to solve symmetric cone
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programming by Lu and Yuan[4]. In this paper, we present an affine-scaling
primal barrier interior-point trust-region algorithm for minimizing a convex
quadratic objective function over a general convex set. To our knowledge,
our algorithm is the first interior-point trust-region algorithm for this spe-
cial convex programming, by using the techniques and properties in both
interior-point algorithms and trust-region methods. We show that the com-
plexity of our algorithm is as good as the standard interior-point polynomial
algorithms. This provides strong theoretical supports to the good practical
performance of the interior-point trust-region algorithm given by Lu and
Yuan[4]. Although our algorithm is based on a fixed trust-region radius and
solves the trust-region subproblem exactly, the framework of the interior-
point trust-region algorithm allows us to make the trust-region radius flexi-
ble and use iterative methods to solve the trust-region subproblem approxi-
mately in practical implementation. This advantage makes the interior-point
trust-region algorithm competitive with the pure interior-point algorithm for
solving large-scale problems. The goal of this paper is to show that the com-
plexity of interior-point trust-region algorithm is as good as the complexity
of pure (standard) interior-point algorithm in convex programming.

2 Self-concordant barrier and its properties

In this section, we present the concept of self-concordant barrier and its
properties that will play an important in our analysis of section 3.

The following definition is due to Nesterov and Nemirovskii[5].

Definition 2.1. Let F : K◦ → R be a C3-smooth convex function such that
F (x) →∞ as x ∈ K◦ approaches the boundary of K and

| F ′′′
(x)[h, h, h] | ≤ 2 〈F ′′

(x)h, h〉3/2 (2.1)

for all x ∈ K◦ and for all h ∈ E. Then F is called a self-concordant function
for K. F is called a self-concordant barrier if F is a self concordant function
and

ϑ := supx∈K◦〈F ′(x), F ′′(x)−1F ′(x)〉 < ∞. (2.2)

ϑ is called barrier parameter of F .

Let F ′′(x) denote the Hessian of a self-concordant function F (x). Since
it is positive definite, for every x ∈ K◦, ‖v‖x = 〈v, F ′′(x)v〉

1
2 is a norm on
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E induced by F ′′(x). Let Bx(y, r) denote the open ball of radius r centered
at y, where the radius is measured w.r.t. ‖ ‖x. This ball is called the Dikin
ball. The following lemmas are very crucial for the analysis of our algorithm
in the next section. For the proofs, see e.g. the chapter 2 of Renegar[6].

Lemma 2.1. Assume F (x) is a self-concordant function for K, then for all
x ∈ K◦, we have Bx(x, 1) ⊆ K◦ and if whenever y ∈ Bx(x, 1) we have

‖v‖y

‖x‖x
≤ 1

1− ‖y − x‖x
for all v 6= 0. (2.3)

Lemma 2.2. Assume F (x) is a self-concordant function for K, x ∈ K◦ and
y ∈ Bx(x, 1), then

|F (y)− F (x)− 〈F ′(x), y − x〉 − 〈y − x, F ′′(x)(y − x)〉
2

| ≤ ‖y − x‖3
x

3(1− ‖y − x‖x)
.

(2.4)

Let n(x) := −F ′′(x)−1F ′(x) be the Newton step of F (x).

Lemma 2.3. Assume F (x) is a self-concordant function. If ‖n(x)‖x ≤ 1
4

then F (x) has a minimizer z and

‖z − x‖x ≤ ‖n(x)‖x +
3‖n(x)‖2

x

(1− ‖n(x)‖x)3
. (2.5)

Lemma 2.4. Assume F (x) is a self-concordant barrier with barrier param-
eter ϑ. If x, y ∈ K◦ then

〈F ′(x), y − x〉 ≤ ϑ. (2.6)

3 The interior-point trust-region algorithm

In this section, we present our algorithm and give the complexity analysis.

We consider the following optimization problem

min q(x) =
1
2
〈x,Qx〉+ 〈c, x〉 (3.1)

subject to x ∈ K. (3.2)

Here Q : E 7→ E is a positive definite or positive semi-definite linear
operator, c ∈ E. K is a bounded convex set with nonempty relative interior.
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We assume F (x) is the self-concordant barrier for K and define the merit
function as

fηk
(x) = ηkq(x) + F (x). (3.3)

From definition 2.1, we can see that function fηk
(x) itself is also a self-

concordant function. We want to decrease the value of fηk
(x) for a fixed ηk

in each inner iteration, and increase ηk to positive infinity in outer iterations.
From Lemma 2.1, for any xk,j ∈ K◦ and d ∈ E, we have that xk,j + d ∈ K◦

provided that ‖F ′′(xk,j)
1
2 d‖ ≤ αk,j < 1. It follows from Lemma 2.2 that

F (xk,j + d)− F (xk,j) ≤ 〈F ′(xk,j), d〉+
〈d, F ′′(xk,j)d〉

2
+

‖d‖3
xk,j

3(1− ‖d‖xk,j
)

≤ 〈F ′(xk,j), d〉+
〈d, F ′′(xk,j)d〉

2
+

α3
k,j

3(1− αk,j)
.(3.4)

Therefore, we get

fηk
(xk,j + d) − fηk

(xk,j) ≤
〈d, (ηkQ + F ′′(xk,j))d〉

2

+〈ηk(Qxk,j + c) + F ′(xk,j), d〉+
α3

k,j

3(1− αk,j)
. (3.5)

The above inequality gives an up bound for fηk
(xk,j + d). It is natural

to minimize this bound in order to force a decrease on the function fηk
(.).

This leads to the following trust-region subproblem

min 1
2〈d, (ηkQ + F ′′(xk,j))d〉+ 〈ηk(Qxk,j + c) + F ′(xk,j), d〉 = mk,j(d)(3.6)

s.t. ‖F ′′(xk,j)
1
2 d‖2 ≤ α2

k,j . (3.7)

Define

Qk,j = ηkF
′′(xk,j)−

1
2 QF ′′(xk,j)−

1
2 + I, (3.8)

ck,j = F ′′(xk,j)−
1
2
(
ηk(Qxk,j + c) + F ′(xk,j)

)
, (3.9)

and using the transformation

d′ = F ′′(xk,j)
1
2 d, (3.10)

we can rewrite subproblem (3.6)-(3.7) into
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min q′k,j(d
′) = 1

2〈d
′, Qk,jd

′〉+ 〈ck,j , d
′〉 (3.11)

‖d′‖2 ≤ α2
k,j . (3.12)

Once d′k,j is computed, we obtain the step

dk,j = F ′′(xk,j)−
1
2 d′k,j , (3.13)

and it follows from inequality (3.5) that

fηk
(xk,j + dk,j) − fηk

(xk,j) ≤ q′k,j(d
′
k,j) +

α3
k,j

3(1− αk,j)
. (3.14)

Algorithm 3.1. (An Interior-Point Trust Region Algorithm)

Step 0 Initialization. An initial point x0,0 ∈ K◦ and an initial pa-
rameter η0 > 0 are given. Set αk,j = α < 1 for some constant
α. Set k = 0 and j = 0.

Step 1 Test inner iteration termination. If

〈ck,j , Q
−1
k,jck,j〉 ≤

1
9
, (3.15)

set xk+1,0 = xk,j and go to Step 3.

Step 2 Step calculation. Solve problem (3.11)-(3.12) obtaining d′k,j

exactly, set dk,j by (3.13) and xk,j+1 = xk,j + dk,j.

Step 3 Update parameter η. Set ηk+1 = θηk for some constant θ >
1. Increase k by 1 and go to step 1.

Theorem 3.1. a) If we choose α = 1
4 , we have that

fηk
(xk,j+1)− fηk

(xk,j) < − 1
48

, (3.16)

which is independent of k and j.
b)If the initial point x0,0 satisfies the condition (3.15), for any ε > 0, our
algorithm obtains a solution x which satisfies q(x)− q(x∗) < ε in at most

48θ(ϑ +
√

ϑ) ln ϑ+
√

ϑ
εη0

ln θ
(3.17)

steps, here x∗ = argminx∈Kq(x).
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To prove part a) of this theorem, we need the following lemma which is
well-known in trust-region literature.

Lemma 3.1. Any global minimizer d′k,j of problem (3.11)-(3.12) satisfies
the equation

(Qk,j + µk,jI)d′k,j = −ck,j , (3.18)

here Qk,j+µk,jI is positive semi-definite, µk,j ≥ 0 and µk,j(‖d′k,j‖−αk,j) = 0.

For a proof, see e.g. Section 7.2 of Conn, Gould and Toint[2].

Proof of Theorem 3.1 part a). If the solution of (3.11)-(3.12) lies on the
boundary of the trust-region, that is, ‖d′k,j‖ = αk,j , we have

q′k,j(d
′
k,j) =

1
2
〈d′k,j , Qk,jd

′
k,j〉+ 〈ck,j , d

′
k,j〉

= 〈d′k,j , Qk,jd
′
k,j + ck,j〉 −

1
2
〈d′k,j , Qk,jd

′
k,j〉

= 〈d′k,j ,−µk,jd
′
k,j〉 −

1
2
〈d′k,j , (ηkF

′′(xk,j)−
1
2 QF ′′(xk,j)−

1
2 + I)d′k,j〉

= −µk,jα
2
k,j −

1
2
〈d′k,j , ηkF

′′(xk,j)−
1
2 QF ′′(xk,j)−

1
2 d′k,j〉 −

1
2
α2

k,j

≤ −1
2
α2

k,j = − 1
32

.

In the above, the third equality follows from the equalities (3.8) and
(3.18), and the inequality follows from the fact that ηkF

′′(xk,j)−
1
2 QF ′′(xk,j)−

1
2

is positive definite or positive semi-definite. Therefore, it follows from in-
equality (3.14) that

fηk
(xk,j+1)− fηk

(xk,j) ≤ − 1
32

+
(1
4)3

3(1− 1
4)

< − 1
48

.

If the solution of (3.11)-(3.12) lies in the interior of the trust-region,
that is, ‖d′k,j‖ < αk,j , from Lemma 3.1 we know µk,j = 0 and consequently
d′k,j = −Q−1

k,jck,j which gives that

q′k,j(d
′
k,j) =

1
2
〈d′k,j , Qk,jd

′
k,j〉+ 〈ck,j , d

′
k,j〉 = −1

2
〈ck,j , Q

−1
k,jck,j〉. (3.19)

By the mechanism of our algorithm, we know that 〈ck,j , Q
−1
k,jck,j〉 > 1

9 for all
k and j. Therefore,

fηk
(xk,j+1)− fηk

(xk,j) ≤ − 1
18

+
(1
4)3

3(1− 1
4)

< − 1
48

.
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Let nηk
(xk,j) be the Newton step of fηk

(x) at the point xk,j . We should
point out that

‖nηk
(xk,j)‖xk,j

= 〈f ′ηk
(xk,j), f ′′ηk

(xk,j)−1f ′ηk
(xk,j)〉

= 〈ηk(Qxk,j + c) + F ′(xk,j), (ηkQ + F ′′(xk,j))−1(ηk(Qxk,j + c) + F ′(xk,j))〉
= 〈ck,j , Q

−1
k,jck,j〉,

where the last equality follows equalities (3.8) and (3.9). This equality con-
nects equality (3.19) and the assumption of the following two lemmas, which
tells us that we can stop the inner iteration if the reduction of the objective
function with an interior solution is smaller than some constant. The fol-
lowing two lemmas extend the results of Renegar[6] for minimizing a linear
objective function over a convex set.

Lemma 3.2. Let x∗ = argminx∈Kq(x). If ‖nη(x)‖x ≤ 1
9 , then

q(x)− q(x∗) ≤ ϑ +
√

ϑ

η
. (3.20)

Proof. Let x(η) = argminx∈Kfη(x). Then

q(x(η))− q(x∗) ≤ 〈q′(x(η)), x(η)− x∗〉

= 〈−F ′(x(η))
η

, x(η)− x∗〉 ≤ ϑ

η
. (3.21)

The first inequality follows from the convexity of q(x). The equality fol-
lows from the fact that f ′(x(η)) = 0, and the last inequality follows from
Lemma 2.4.

It easily follows from Lemma 2.3 that

‖x− x(η)‖x ≤
1
9

+
3(1

9)2

(1− 1
9)3

<
1
4

(3.22)

and consequently from Lemma 2.1 that

‖x− x(η)‖x(η) ≤
‖x− x(η)‖x

1− ‖x− x(η)‖x
<

1
3
. (3.23)

Then we have
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q(x)− q(x(η)) = 〈q′(x(η)), x− x(η)〉+
〈x− x(η), Q(x− x(η))〉

2

= 〈−F ′(x(η))
η

, x− x(η)〉+
〈x− x(η), ηQ(x− x(η))〉

2η

≤ 〈−F ′′(x(η))−
1
2 F ′(x(η)), F ′′(x(η))

1
2 (x− x(η))〉

η
+
‖x− x(η)‖x

2η

≤ ‖F ′′(x(η))−
1
2 F ′(x(η))‖‖F ′′(x(η))

1
2 (x− x(η))‖

η
+

1
8η

≤
√

ϑ‖x− x(η)‖x(η)

η
+

1
8η

≤
√

ϑ

3η
+

1
8η

≤
√

ϑ

η
, (3.24)

where the last inequality follows from the fact that ϑ is always greater than
1 and the third last inequality uses the definition of ϑ. By adding the in-
equality (3.21) and inequality (3.24), we get inequality (3.20). �

The above lemma tells us that to get an ε-solution, we only need

ηk = η0θ
k ≥ ϑ +

√
ϑ

ε
,

which is true provided that the number of outer iterations k satisfies

k ≥
ln ϑ+

√
ϑ

εη0

ln θ
. (3.25)

Lemma 3.3. If ‖nηk
(x)‖x ≤ 1

9 , then

fηk+1
(x)− fηk+1

(x(ηk+1)) ≤ θ(ϑ +
√

ϑ). (3.26)

Proof . From the convexity of fηk+1
(x) and inequality (3.22), we can

show that
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fηk+1
(x) − fηk+1

(x(ηk)) ≤ 〈f ′ηk+1
(x), x− x(ηk)〉

= 〈ηk+1(Qx + c) + F ′(x), x− x(ηk)〉

=
ηk+1

ηk
〈ηk(Qx + c) + F ′(x), x− x(ηk)〉+ (

ηk+1

ηk
− 1)〈F ′(x), x(ηk)− x〉

= θ〈f ′′−
1
2

ηk (x)(ηk(Qx + c) + F ′(x)), f ′′ηk
(x)

1
2 (x− x(ηk))〉

+(θ − 1)〈F ′′(x)−
1
2 F ′(x), F ′′(x)−

1
2 (x(ηk)− x)〉

≤ θ‖f ′′−
1
2

ηk (x)(ηk(Qx + c) + F ′(x))‖‖f ′′ηk
(x)

1
2 (x− x(ηk))‖

+(θ − 1)‖F ′′(x)−
1
2 F ′(x)‖‖F ′′(x)

1
2 (x(ηk)− x)‖

≤ θ‖nηk
(x)‖x‖x(ηk)− x‖x + (θ − 1)

√
ϑ‖x(ηk)− x‖x

≤ θ
1
9

1
4

+ (θ − 1)
√

ϑ
1
4
≤ θ

√
ϑ. (3.27)

Similarly, we have

fηk+1
(x(ηk)) − fηk+1

(x(ηk+1)) ≤ 〈f ′ηk+1
(x(ηk)), x(ηk)− x(ηk+1)〉

= 〈ηk+1(Qx(ηk) + c) + F ′(x(ηk)), x(ηk)− x(ηk+1)〉

=
ηk+1

ηk
〈ηk(Qx(ηk) + c) + F ′(x(ηk)), x(ηk)− x(ηk+1)〉

+(
ηk+1

ηk
− 1)〈F ′(x(ηk)), x(ηk+1)− x(ηk)〉

= θ〈f ′ηk
(x(ηk)), x(ηk)− x(ηk+1)〉

+(θ − 1)〈F ′(x(ηk)), x(ηk+1)− x(ηk)〉
= (θ − 1)〈F ′(x(ηk)), x(ηk+1)− x(ηk) < θϑ, (3.28)

where the last inequality follows from Lemma 2.4 and the last equality fol-
lows from the fact that x(ηk) minimizes fηk

(x) (which implies that f ′ηk
(x(ηk)) =

0). By adding inequality (3.27) and inequality (3.28), we get inequality
(3.26). �

This lemma and Part a) of Theorem 3.1 tell us that we need at most

48(ϑ +
√

ϑ) (3.29)

steps in each inner iteration.
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Proof of Theorem 3.1 part b). It follows from (3.25) and (3.29). �

Finally, a brief discussion is given on the case when the initial point
x0,0 does not satisfy condition (3.15). Without loss of generality, we can
start from the analytic center of the feasible set K since K is a bounded
convex set. Let x(η0) = argminx∈Kfη0(x) and x∗ = argminx∈Kq(x). Since
x0,0 = argminx∈KF (x), we have

fη0(x0,0)− fη0(x(η0)) ≤ η0(q(x0,0)− q(x∗)). (3.30)

By choosing η0 ≤ 1
q(x0,0)−q(x∗) , we can see that Theorem 3.1 part a)

implies that condition (3.15) will be satisfied after at most 48 steps.
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