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Abstract. In this paper, we consider the truncated conjugate gradient method for minimizing a convex
quadratic function subject to a ball trust region constraint. It is shown that the reduction in the objective
function by the solution obtained by the truncated CG method is at least half of the reduction by the global
minimizer in the trust region.
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1. Introduction

Consider the unconstrained optimization problem

min
x∈<n

f(x), (1)

where f(x) is continuously differentiable. Trust region algorithms for (1) often need to
solve the following subproblem: (TRS)

min
d∈<n

φ(d) = gTd+ 1

2
dT Bd (2)

subject to

‖d‖ ≤ 1, (3)

where1 > 0 is a trust region bound,g ∈ <n is the gradient of the objective function
f(x) at the current iterate, andB ∈ <n×n symmetric is an approximation to the Hessian
of f(x). At each iteration of a trust region algorithm, a problem in the form of (2)–(3)
has to be solved exactly or inexactly to obtain a trial step. The trial step, often called as
the trust region step, will either be accepted or rejected after testing some test condition
based on the predicted reduction and the actual reduction of the objective function. For
more details, please see Fletcher [2].

The following lemma is well known (for example, see Gay [3] and More and
Sorensen [4]):
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Lemma 1. A vectord∗ ∈ <n is a solution of (2)–(3) if and only if there existsλ∗ ≥ 0
such that

(B+ λ∗ I )d∗ = −g (4)

and thatB+ λ∗ I is positive semi-definite,||d∗||2 ≤ 1 and

λ∗(1− ||d∗||2) = 0. (5)

For a give trial steps, the prediction of the objective function is given by

Pred(s) = φ(0)− φ(s). (6)

It is shown by Powell [5] that trust region algorithms for (1) is convergent if the trust
region step satisfies

Pred(s) ≥ c‖g‖min{1, ‖g‖/‖B‖} (7)

and some other conditions onB are satisfied. It is easy to see that

φ(0)− min
d∈Span{g},‖d‖≤1φ(d) ≥

1

2
‖g‖min{1, ‖g‖/‖B‖}. (8)

Therefore it is quite common that in practice the trial step at each iteration of a trust
region method is computed by solving the trust region subproblem (2)–(3) inexactly.
One way to compute an inexact solution of (2)–(3) was the truncated conjugate gradient
method proposed by Toint [7] and Steihaug [6]. The aim of this paper is to show that ifB
is positive definite, the function reduction obtained by the truncated conjugate gradient
method is at least half of the reduction obtained by the exact solution.

2. The truncated CG method

The conjugate gradient method for

min
d∈<n

φ(d) = gTd+ 1

2
dT Bd (9)

generates a sequence as follows:

xk+1 = xk + αkdk, (10)

dk+1 = −gk + βkdk, (11)

wheregk = ∇φ(xk) = g+ Bxk and

αk = −gT
k dk/d

T
k Bdk, βk = ‖gk+1‖2/‖gk‖2, (12)

with the initial values

x1 = 0, d1 = −g1 = −g. (13)

It can be shown that the conjugate gradient method terminates after at mostn iterations
(see Fletcher [2]). That is, there exists a integerk̄ ≤ n+ 1 such thatgk̄ = 0.
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Lemma 2. For anyk ≥ 1 such thatgk 6= 0 we have that

dk = −‖gk‖2
k∑

i=1

gi

‖gi‖2 (14)

xk+1 = −
k∑

i=1

gi

‖gi‖2
k∑

j=i

α j ‖gj‖2. (15)

Proof. By definition,d1 = −g1, which shows that (14) holds fork = 1. Assume it
holds fork = 1, ..., k̄. If gk̄+1 6= 0, it follows from (11) and (12) that

dk̄+1 = −gk̄+1 +
‖gk̄+1‖2
‖gk̄‖2

dk̄ = −gk̄+1+
‖gk̄+1‖2
‖gk̄‖2

−‖gk̄‖2
k̄∑

i=1

gi

‖gi‖2

 (16)

= −‖gk̄+1‖2
 gk̄+1

‖gk̄+1‖2
+

k̄∑
i=1

gi

‖gi‖2

 = −‖gk̄+1‖2
k̄+1∑
i=1

gi

‖gi‖2 .

Thus, by induction, (14) is true for allk ≥ 1 provided thatgk 6= 0.
From (13), (10) and (14), we have that

xk+1 =
k∑

j=1

α j dj = −
k∑

j=1

α j ‖gj‖2
j∑

i=1

gi

‖gi‖2

= −
k∑

i=1

gi

‖gi‖2
k∑

j=i

α j ‖gj‖2, (17)

which shows that (15) holds.
ut

Toint [7] and Steihaug [6] were the first to use the conjugate gradient method to
solve the general trust region subproblem (2)–(3). Even without assuming the positive
definite of B, we can continue the conjugate gradient method provided thatdT

k Bdk is
positive. If the iteratexk+ αkdk computed is in the trust region ball, it can be accepted,
and the conjugate gradient iterates can be continued to the next iteration. Whenever
dT

k Bdk is not positive orxk + αkdk is outside the trust region, we can take the longest
step alongdk within the trust region and terminate the calculations.

Algorithm 1. (Truncated Conjugate Gradient Method For Trust Region Subproblem)

Step 0. Giveng ∈ <n, B ∈ <n×n symmetric;
x1 = 0, g1 = g, d1 = −g, k = 1.

Step 1. If ||gk|| = 0 then setx∗ = xk and stop;
ComputedT

k Bdk; if dT
k BdT

k ≤ 0 then go to Step 3;
Calculateαk by (12).
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Step 2. If ||xk+ αkdk|| ≥ 1 then go to Step 3;
Setxk+1 by (10) andgk+1 = gk+ αkBdk;
Computeβk by (12) and setdk+1 by (11);
k := k+ 1, go to Step 1.

Step 3. Computeα∗k ≥ 0 satisfying||xk + α∗kdk|| = 1;
Setx∗ = xk + α∗kdk, and Stop.

Let x∗ be the inexact solution of (2)–(3) obtained by the above truncated CG method
andd∗ be the exact solution of (2)–(3). Ifn = 2, Yuan [10] shows that

φ(0)− φ(x∗)
φ(0)− φ(d∗) ≥

1

2
. (18)

It was also conjectured by Yuan [10] that (18) is true for alln. Numerical tests given by
Chen [1] support this conjecture. Recently Tseng [8] shows that

φ(0)− φ(x∗)
φ(0)− φ(d∗) ≥

1

3
. (19)

The main result of this paper is establishing (18) for alln ≥ 1. Inequality (18) presents
a reason why the Steihaug-Toint CG method works so well in practice.

Let q̄ = max‖d‖≤1 φ(d), we have

q̄− φ(0) ≥ φ(0)− φ(d∗), (20)

if B is positive semi-definite. In this case, (18) and the above inequality imply that

q̄− φ(x∗)
q̄− φ(d∗) ≥

3

4
. (21)

This kind of inequality is also of interests in complexity analysis(for example, see
Ye [9]).

3. Conjugate gradient path

For any given orthogonal matrixQ, we defineḡ = QT g, and B̄ = QT BQ, we can
easily see that the conjugate gradient method applied to

φ̄(d̄) = ḡTd̄+ 1

2
dT B̄d̄ (22)

will generate the iterates̄xk = QT xk, ḡk = QT gk andd̄k = QTdk. Thus, the conjugate
gradient method is invariant by orthogonal transformation. Since for any giveg ∈ <n

and symmetric matrixB, there exists a orthogonal matrixQ such thatQT g is parallel
to the first coordinate direction andQT BQ is a tridiagonal matrix. Therefore, without
loss of generality, throughout the rest of this paper, we assume that

g= ‖g‖


1
0
...

0

 (23)
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B =



u1 v1 0 . . . 0 0
v1 u2 v2 . . . 0 0
0 v2 u3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . un−1 vn−1
0 0 0 . . . vn−1 un


(24)

In the following we define the path given by the conjugate gradient method. For all
k ≥ 1 such thatgk 6= 0, we denote

x(t) = xk + (t − k)(xk+1 − xk), ∀t ∈ [k, k+ 1]. (25)

Define

Bk =



u1 v1 0 . . . 0 0
v1 u2 v2 . . . 0 0
0 v2 u3 . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . uk−1 vk−1
0 0 0 . . . vk−1 uk


, (26)

which is the submatrix of the firstk rows and firstk columns ofB. We assume thatB is
positive definite, which implies that allBk are also positive definite. It is easy to prove
that

Lemma 3. If
∏k

i=1 vi 6= 0, then

xk+1 = −‖g‖
(

B−1
k e1
0

)
. (27)

And

gk+1 = (−1)kek+1‖g‖
∏k

i=1 vi

Det(Bk)
. (28)

Proof. xk+1 is the solution of

min
d∈Sk

gTd+ 1

2
dT Bd (29)

where

Sk = Span
{
g, Bg, B2g, . . . , Bk−1g

}
. (30)

From the facts thatg = ‖g‖e1, B is tridiagonal andvi 6= 0(i = 1, ..., k− 1), we can
easily see that

Sk = Span{e1,e2, . . . ,ek}. (31)
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It follows from (29)–(31) that fori = 1, . . . , k

eT
i gk+1 = 0, (32)

which gives that

eT
i (g+ Bxk+1) = 0 (33)

for all i = 1, ..., k. The above equation and the fact thatxk+1 ∈ Sk show the validity
of (27).

From (27), we have that

gk+1 = g+ Bxk+1 = −‖g‖vkeT
1 B−1

k ekek+1. (34)

Fork = 1, we have that

g2 = −‖g‖v1eT
1 B−1

1 e1e2 = −e2‖g‖ v1

Det(B1)
. (35)

If k > 1, becauseBk is tridiagonal, we can see that

eT
1 B−1

k ek = (−1)k−1
∏k−1

i=1 vi

Det(Bk)
, (36)

which, together with (34), gives

gk+1 = (−1)k‖g‖ek+1

∏k
i=1 vi

Det(Bk)
. (37)

It follows from (37) and (35) that relation (28) holds for allk ≥ 1.
ut

From the above lemma, we can see that

‖gk+1‖2 = ‖g‖2
∏k

i=1 v
2
i

(Det(Bk))2
. (38)

Lemma 4. k< n is the integer such that

gk+1 = 0 (39)

if and only if thatk is the smallest integer that

vk = 0. (40)

Proof. The lemma follows from (37) directly.
ut

If gk+1 = 0 for k < n, we can consider the problem in the subspaceSpan{e1,

e2, ...,ek}. Hence, there is no loss of generality in assuming thatvi 6= 0 for all i =
1, ...,n− 1.
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Lemma 5. Let x(t)(t ≥ 1) is the conjugate gradient path. Ifvi 6= 0 (i = 1, ..., k− 1),
we have that

x(t) = −
k∑

i=1

γi (t)Sign
(
eT

i gi
)
ei , for all t ∈ [1, k+ 1] (41)

whereγi (t) = 0 for t ∈ [1, i ] and

γi (t) = 1

‖gi‖

[t]−1∑
j=i

α j ‖gj‖2 + (t − [t])α[t]‖g[t]‖2
 (42)

for t ∈ [i , k + 1], where [t] is the largest integer that is not greater thant. Here
Sign(eT

i gi ) = 1 if eT
i gi > 0, otherwiseSign(eT

i gi ) = −1.

Proof. By definition

Sign
(
eT

i gi
)
ei = gi

‖gi‖ . (43)

It follows from (25), (14), (15), (10) and the fact thatγi (t) = 0 for i ≥ t that

x(t) = x[t] + (t − [t])α[t]d[t]

= −
[t]−1∑
i=1

gi

‖gi‖2
[t]−1∑
j=i

α j‖gj‖2 + (t − [t])α[t]
(
−‖g[t]‖2

[t]∑
i=1

gi

‖gi‖2
)

= −
[t]∑

i=1

gi

‖gi‖2

[t]−1∑
j=i

α j ‖gj‖2+ (t − [t])α[t]‖g[t]‖2


= −
[t]∑

i=1

gi

‖gi‖γi (t)

= −
k∑

i=1

gi

‖gi‖γi (t). (44)

This completes our proof.
ut

The following corollaries are useful in our analysis.

Corollary 1. If vi 6= 0 (i = 1, ..., k− 1), then for each given integeri ∈ [1, k] γi (t) is
strictly increasing fort ∈ [i , k+ 1]. Furthermore, we have that

−x(t)T g = γ1(t)‖g‖ (45)

‖x(t)‖2 =
k∑
i

(γi (t))
2, (46)

for all t ∈ [1, k+ 1]. Thus,−x(t)T g and‖x(t)‖ are strictly monotonically increasing
functions oft in [1, k+ 1].
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Proof. The increasing ofγi (t) can be directly shown from (42). (45) and (46) are
consequences of (41).

ut
Corollary 2. If vi 6= 0 (i = 1, ..., k − 1), then for each given integeri ∈ [1, k] the
relation

‖gi‖[γi (t̂)− γi (t̄)] = ‖g‖[γ1(t̂)− γ1(t̄)] (47)

holds for any twōt and t̂ ∈ [i , k+ 1].
Proof. (47) follows from (42).

ut
Corollary 3. If vi 6= 0 (i = 1, ..., k− 1), then

x(t)T g(x(t)) ≤ 0, (48)

for all t ∈ [1, k+ 1].
Proof. For any t ∈ [1, k + 1], there exists an integeri ∈ [1, k] and a real number
δ ∈ [0,1] such that

t = αi + (1− α)(i + 1). (49)

Therefore we have that

g(x(t)) = αgi + (1− α)gi+1. (50)

The above relation and (41) gives that

x(t)T g(x(t)) = −αγi (t)‖gi‖ − (1− α)γi+1(t)‖gi+1‖ ≤ 0. (51)

This indicates that the corollary holds.
ut

.

4. Conjugate gradient path of the exact solution of TRS

It follows from Lemma 1 that the exact solutiond∗ of the trust region subproblem (2)–(3)
is the minimizer ofφ(d)+ λ∗‖d‖2/2. Thusd∗ is the end of the conjugate gradient path
if the objective function isφ(d)+ λ∗‖d‖2/2.

For any givenλ > 0, we consider the conjugate gradient method applied to the
problem

min
d∈<n

φ(d, λ) = gTd+ 1

2
dT(B+ λI )d. (52)
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Let the iterate points and the gradients generated be denoted byxi (λ)(i = 1, ...,n+ 1)
andgi (λ)(i = 1, ...,n + 1) respectively. We have thatx1(λ) = x1 = 0 andg1(λ) =
g1 = g. It follows from (28) that

gk+1(λ) = Det(Bk)

Det(Bk + λI )
gk+1 (53)

for k ≥ 1. Thus, the conjugate gradient path is now given by

x(t, λ) = −
k∑

i=1

γi (t, λ)Sign
(
eT

i gi
)
ei , for all t ∈ [1, k+ 1], (54)

whereγi (t, λ) = 0 for t ∈ [1, i ] and

γi (t, λ) = 1

‖gi (λ)‖

[t]−1∑
j=i

α j (λ)‖gj (λ)‖2+ (t − [t])α[t](λ)‖g[t](λ)‖2
 (55)

for t ∈ [i , k+ 1].
ut

Lemma 6. For anyλ > 0 andk ≥ 1 such thatgk 6= 0, we have

−xk+1(λ)
T g< −xT

k+1g (56)

‖xk+1(λ)‖ < ‖xk+1‖. (57)

Furthermore,

‖gk(λ)‖ < ‖gk‖ (58)

if k> 1.

Proof. It follows from (27) that

−xk+1(λ)
T g= ‖g‖2eT

1 (Bk + λI )−1e1 < ‖g‖2eT
1 B−1

k e1 = −xT
k+1g, (59)

which shows that (56) is true.
Again, from (27), we have that

‖xk+1(λ)‖2 = ‖g‖2eT
1 (Bk + λI )−2e1 < ‖g‖2eT

1 B−2
k e1 = ‖xk+1‖2, (60)

which gives (57). Ifk > 1, From (38) we have that

‖gk(λ)‖ = ‖gk‖ Det(Bk−1)

Det(Bk−1 + λI)
< ‖gk‖. (61)

This completes the proof of the lemma.
ut
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Theorem 1. For anyλ > 0 and k ≥ 1 such thatgk 6= 0, there existstk ∈ [1, k+ 1)
such that

−xk+1(λ)
T g= −x(tk)

T g, (62)

and

γi (tk) < γi (k+ 1, λ), (63)

for all i = 2, ..., k.

Proof. If k = 1, we have

−xk+1(λ)
T g= −x2(λ)

T g= α1(λ)g
T g= ‖g‖4

gT(B+ λI )g
(64)

and

−x(t)Tg= −(t − 1)xT
2 g= (t − 1)

‖g‖4
gT Bg

(65)

for t ∈ [1,2]. Thus, (62) is true fork = 1 if we let t1 = 1+ gT Bg/gT(B+ λI )g.
For the case whenk = 2. If g2 6= 0, if follows from Corollary 1 that there exists

t2 ∈ [1,3) such that (62) holds. Ift2 ≤ 2 thenγ2(t) = 0 which implies (63). Otherwise,
we have thatt2 ∈ (2,3). It follows (47) and (58) that

γ2(t2) = γ2(t2)− γ2(2) = ‖g‖‖g2‖ [γ1(t2)− γ1(2)]

<
‖g‖
‖g2‖ [γ1(t2)− γ1(t1)] = ‖g‖‖g2‖ [γ1(3, λ)− γ1(2, λ)]

= ‖g‖‖g2‖
‖g2(λ)‖
‖g(λ)‖ [γ2(3, λ)− γ2(2, λ)]

< γ2(3, λ)− γ2(2, λ) = γ2(3, λ), (66)

which shows that (63) holds fork = 2.
Now we prove the theorem by induction. we assume that for somek ≥ 2 there exists

tk ∈ [1, k+ 1) such that (62) and (63) hold. Ifgk+1 6= 0, from the above lemma and the
monotone property ofx(t)T g, there exists a uniquetk+1 ∈ (t, k+ 2) such that

−xk+2(λ)
T g= −x(tk+1)

T g. (67)

Relation (47) implies that

γi (k+ 2, λ)− γi (k+ 1, λ)

γ1(k+ 2, λ)− γ1(k+ 1, λ)
= ‖g‖
‖gi (λ)‖ . (68)

for all i = 1, ..., k+ 1.
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On the other hand, letL = [tk] andM = [tk+1], we have that

γi (tk+1) = γi (tk)+ 1

‖gi‖

(L + 1− tk)αL‖gL‖2

+
M−1∑

j=L+1

α j ‖gj‖2+ (tk+1 − M)αM‖gM‖2
 (69)

for all i = 1,2, ..., L, and

γi (tk+1) = γi (tk)+ 1

‖gi‖

M−1∑
j=i

α j‖gj‖2 + (tk+1 − M)αM‖gM‖2
 (70)

for i = L + 1, ...,M. Therefore if follows from the above two relations that

γi (tk+1)− γi (tk)

γ1(tk+1)− γ1(tk)
= ‖g1‖
‖gi‖ (71)

for i = 1, ..., L, and

γi (tk+1)− γi (tk)

γ1(tk+1)− γ1(tk)
<
‖g1‖
‖gi‖ (72)

for i = L+1, ...,M. Therefore, fori = 2, ...,min{M, k} it follows from (62), (63), (71)
and (72) that

γi (tk+1) = γi (tk)+ [γi (tk+1)− γi (tk)]
≤ γi (tk)+ ‖g‖‖gi‖[γ1(tk+1)− γ1(tk)]

= γi (tk)+ ‖g‖‖gi‖[γ1(k+ 2, λ)− γ1(k+ 1, λ)]

= γi (tk)+ ‖gi (λ)‖
‖gi‖ [γi (k+ 2, λ)− γi (k+ 1, λ)]

< γi (tk)+ [γi (k+ 2, λ)− γi (k+ 1, λ)]
< γi (k+ 2, λ). (73)

The above inequality and the fact thatγi (tk+1) = 0 for all i > M imply that

γi (tk+1) < γi (k+ 2, λ) (74)

for all i = 2, ..., k.
If tk+1 ≤ k+ 1 thenγk+1(tk+1) = 0 which shows that

γk+1(tk+1) < γk+1(k+ 2, λ). (75)
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Otherwise, we have thattk+1 ∈ (k+ 1, k+ 2).

γk+1(tk+1) = γk+1(tk+1)− γk+1(k+ 1) = ‖g‖
‖gk+1‖

[
γ1(tk+1)− γ1(k+ 1)

]
<
‖g‖
‖gk+1‖

[
γ1(tk+1)− γ1(tk)

] = ‖g‖
‖gk+1‖ [γ1(k+ 2, λ)− γ1(k+ 1, λ)]

= ‖g‖
‖gk+1‖

‖gk+1(λ)‖
‖g(λ)‖

[
γk+1(k+ 2, λ)− γk+1(k+ 1, λ)

]
< γk+1(k+ 2, λ)− γk+1(k+ 1, λ) = γk+1(k+ 2, λ). (76)

The inequalities (74)–(76) show that (63) holds whenkis replaced byk+1. By induction,
we see that the theorem is true.

ut
Lemma 7. For anyλ > 0andk ≥ 1such thatgk 6= 0, there exists a uniquêt ∈ [1, k+1)
such that

‖x(t̂)‖ = ‖xk+1(λ)‖, (77)

furthermore

−xk+1(λ)
T g≤ −x(t̂)T g. (78)

If k > 1 the above inequality holds as a strictly inequality.

Proof. From the above theorem, there exists atk ∈ [1, k+ 1) such that (62) and (63)
hold. These two relations gives that

‖xk+1(λ)‖ ≥ ‖x(tk)‖. (79)

The above inequality holds as a strictly inequality ifk > 1. The monotone property of
‖x(t)‖ and inequality (79) indicates that there exists at̂ ∈ [tk, k+ 1) such that

‖x(t̂)‖ = ‖xk+1(λ)‖. (80)

Becausêt ≥ tk, we have that

−x(t̂)T g≥ −x(tk)
T g= −xk+1(λ)

T g. (81)

If k > 1, (79) holds as a strictly inequality, which implies thatt̂ > tk, consequently we
see that (81) holds as a strictly inequality.

ut
Theorem 2. For any1 > 0. g ∈ <n and any positive definite matrixB ∈ <n×n, let d∗
be the global solution of the trust region subproblem (2)–(3), and letx∗ be the solution
obtained by the truncated CG method, then inequality (18) holds.
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Proof. Due to the fact thatφ(0) = 0, (18) is equivalent to

φ(x∗) ≤ 1

2
φ(d∗). (82)

Thus we only need to prove the above inequality. Becaused∗ is the exact solution of
(2)–(3), it follows from Lemma 1 that there exists a Lagrange multiplierλ ≥ 0 such that
d∗ is the minimizer ofφ(d)+ 1

2λ‖d‖2. If λ = 0, thenx∗ = d∗, which implies (82).
Now we assume thatλ > 0. There exists ak ∈ [1,n] such thatgk(λ) 6= 0 and

gk+1(λ) = 0. This is easy to see that

d∗ = xk+1(λ). (83)

From the above lemma, there exists at̂ such that (77) and (78) hold.λ > 0 implies that
‖d∗‖ = 1, Thus, (83) and (77) show that‖x(t̂)‖ = 1. Therefore, by the definition of
the CG pathx(t) we have that

x∗ = x(t̂). (84)

Thus, it follows from (48) and (78) that

φ(x∗) = 1

2
gTx∗ + 1

2
x(t̂)T g(x(t̂)) ≤ 1

2
gTx∗ ≤ 1

2
gT xk+1(λ) = 1

2
gTd∗ ≤ 1

2
φ(d∗).

(85)

This completes our proof.
ut

We have shown that if the Steihaug-Toint truncated CG method is used to solve the
trust region subproblem (2)–(3), the function reduction is at least half of the maximum
reduction.

Preconditions change the variabled without alternating the function valueφ(d),
therefore it is easy to see our result is independent of preconditioning.
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