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Abstract

In this paper, we study convergence properties of null step techniques for con-
strained optimization. In most algorithms that use a null step and range space step,
the range space step is normally a quadratic convergent step as it is obtained by
Newton’s method, but the null step converges much slower as quite often it is com-
puted by quasi-Newton methods. This unbalance suggests us to study a technique
that computes the null steps more often than the range space step.

1 Introduction

In this paper we study null step algorithms for the equality constrained optimization
problem which has the following form:

min f(x) (1.1)

subject to
c(x) = 0, (1.2)

where f(x) is a real valued function defined in <n and c(x) = (c1(x), c2(x), . . . , cm(x))T is
a mapping from <n to <m.

Consider an iterative algorithm for problem (1.1)-(1.2). At the beginning of the k−th
iteration, we have a current iterate point xk, which is an approximate solution. We hope
to find a better approximate point xk+1. Write the point that we are searching for in
the form xk + d, we would require c(xk + d) = 0. However, generally this leads to a
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nonlinear equation which would require an infinite iterative process to solve. Therefore it
is reasonable to replace it by a linearized system c(xk) + AT

k d = 0, where

Ak = ∇c(xk)
T = (∇c1(xk),∇c1(xk), . . . ,∇cm(xk)) (1.3)

is the Jacobian matrix of c(x) at xk. Many algorithms require the search direction satis-
fying the linearized constraints. For example, the SQP method which solves the following
subproblem:

min gT
k d +

1

2
dT Bkd (1.4)

subject to
c(xk) + AT

k d = 0, (1.5)

where gk = g(xk) = ∇f(xk), and Bk is an approximation to the Hessian of the Lagrangian
function. Assume that ck is in the range space of AT

k (which is true if Ak has full column
rank), then we can see that all the solutions of (1.5) can be written in the form

d = −(AT
k )+ck + (I − (AT

k )+AT
k )y (1.6)

where y is any vector in <n. Therefore d can be decomposed into two parts, one is in the
range-space and the other in the null space. The range space step, which is often called
the vertical step, is

vk = −(AT
k )+ck. (1.7)

The freedom of d lies in the null space. The null step, which is also called the horizontal
step, can be expressed as

h = Zkd̄, (1.8)

where d̄ ∈ <n−r, Zk ∈ <n×(n−r), r being the rank of Ak and

ZT
k Zk = I, AT

k Zk = 0. (1.9)

We can see that the columns of Zk form an orthogonal basis of the null space of AT
k . Using

the null step expression, the objective function in the SQP method can be rewritten as

ḡT
k d̄ + vT

k BkZkd̄ +
1

2
d̄T B̄kd̄, (1.10)

where
ḡk = ZT

k gk (1.11)

is the reduced gradient, and
B̄k = ZT

k BkZk (1.12)

is the two sided reduced Hessian of the Lagrangian function. This leads to the linear
system:

ḡk + ZT
k Bkvk + B̄kd̄ = 0. (1.13)
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The above equation and d = vk + Zkd̄ give that

ZT
k gk + ZT

k Bkd = 0 (1.14)

ck + AT
k d = 0. (1.15)

The above system can also be easily derived from the KKT condition for the quadratic
programming problem (1.4)-(1.5). Actually (1.14) is equivalent to the existence a vector
λ ∈ <m such that

gk + Bkd− Akλ = 0 (1.16)

holds. Algorithms based on the (1.14)-(1.15) with ZT
k Bk is replaced by an approximate

matrix B̂k ∈ <(n−r)×n is so called one-side reduced Hessian method. Under certain condi-
tions, it is shown that the one-side reduced Hessian method is superlinearly convergence
(see Nocedal and Overton(1985)). Using d = ZkZ

T
k d + YkY

T
k d , where Yk ∈ <n×r satisfies

Y T
k Yk = I and Y T

k Zk = 0. We can rewrite (1.14)-(1.15) as

(
ZT

k BkZk ZT
k BkYk

0 AT
k Yk

) (
ZT

k d
Y T

k d

)
= −

(
ZT

k gk

ck

)
. (1.17)

In his study on the SQP method, Powell(1978) showed that the SQP method is two step
q-superlinear convergence provided that B̄k = ZT

k BkZk is a good approximation to the
two sided reduced Hessian matrix and ZT

k BkYk is bounded. Replacing ZT
k BkYk by the

zero matrix, We obtained the

B̄kZkd = −ZT
k gk,

AT
k YkY

T
k d = −ck. (1.18)

Denote the solution by dk, it follows that

ZT
k dk = −B̄−1

k ZT
k gk

YkY
T
k dk = −(AT

k )+ck. (1.19)

Thus, remembering that d = ZkZ
T
k d + YkY

T
k d, we have

dk = vk + hk, (1.20)

where

hk = −ZkB̄
−1
k ZT

k gk,
vk = −(Ak)

+ck. (1.21)

Reduced Hessian methods for constrained optimization have been studied by many
researchers. Recent works include Gilbert(1991) and Xie and Byrd (1999).

A very good properties of the two sided reduced Hessian method is that we only need
to have the two sided reduced Hessian matrix B̄k which has only (n − m) × (n − m)
elements while the one sided reduced Hessian ZT

k Bk has (n−m)× n elements. Thus the
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step dk in the two-sided reduced Hessian method is much easy to computed than in the
one-side reduced Hessian method, especially when n−m is much less than n. However, an
unsatisfactory property of the two sided reduced Hessian method is that its convergence
rate is only two step q-superlinearly convergence, namely

lim
‖xk+1 − x∗‖
‖xk−1 − x∗‖ = 0, (1.22)

while the one sided reduced Hessian method is one step q-superlinearly convergence which
says

lim
‖xk+1 − x∗‖
‖xk − x∗‖ = 0. (1.23)

An observation on the two sided reduced Hessian is as follows. In many practical
implementations, the two sided reduced Hessian matrix ZT

k BkZk is replaced by an (n −
m)× (n−m) quasi-Newton matrix. Thus, the method in the null space is a quasi-Newton
step while in the range space is a Newton step. As the Newton method is quadratic
convergence, while the q-order of convergence of the quasi-Newton method can be very
close to one(see Yuan(1984), it is expected that the iterate points approach the solution
much faster in the range space than in the null space. To overcome this unbalance, it is
intuitive to to take more null space steps than range space steps. The aim of the this
paper is to explore this idea.

In the next section, we give an algorithm and shows that the algorithm is locally one
step q-superlinearly convergent. In Section 3 an example is given to show the numerical
behaviour of the algorithm.

2 The Algorithm and Its Convergence

We consider a method that takes two null space steps after every range space step. At
the k−th iteration, the vertical step is

vk = −(AT
k )+ck (2.1)

and the null space step is
hk = −ZkB̄

−1
k ḡk (2.2)

We definite the new point
x̄k = xk + vk + hk, (2.3)

which is the next iterate point in standard two sided reduced Hessian method. Now we
consider to carry out another null step. At the new point x̄k, Let the A(x̄k) be computed
and the projected Thus, the gradient of the objective function g(x̄k) projected to the null
space of the linearized constraints at the point x̄k is as follow:

g̃k = Z̄kZ̄
T
k g(x̄k). (2.4)
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Consider the second null space step also have the form Zkd, it is natural to obtain d by
solving the following subproblem

min g̃T
k Zkd +

1

2
dT B̄kd, (2.5)

which has the solution
−B̄−1

k ZT
k g̃k. (2.6)

Therefore the second null space step is given by

ĥk = −ZkB̄
−1
k ZT

k g̃k. (2.7)

Define ĝk = ZT
k g̃k, it follows that

ĥk = −ZkB̄
−1
k ĝk, (2.8)

which shows that the formula for the second null step is the same as the first null space
step except that ḡk is replaced by ĝk.

Thus we have
dk = vk + hk + ĥk. (2.9)

Now we study the local convergence properties of the second null step. Assume that
xk converges to a solution of the optimization problem (1.1)-(1.2) at which the following
conditions are satisfied:

Assumption 2.1 Assume that x∗ is a KKT point, namely c(x∗) = 0 and there exists
λ∗ ∈ <m such that

g(x∗)− A(x∗)λ∗ = 0. (2.10)

Assume that A(x∗) has full column rank. Denote the Hessian of Lagrange function by

W ∗ = ∇2f(x∗)−
m∑

i=1

(λ∗)i∇2ci(x
∗). (2.11)

Let Z∗ ∈ <n×(n−m) be a matrix whose columns form an orthonormal basis of the null space
of A(x∗). Assume that (Z∗)T W ∗Z∗ is positive definite.

We also assume that the two sided reduced Hessian is a good approximation:

Assumption 2.2 Assume that

lim
k→∞

‖(B̄k − (Z∗)T W ∗Z∗)dk‖
‖dk‖ = 0. (2.12)

First we have the following lemmas.

Lemma 2.3 If Assumption 2.2 holds, then

ZT
k W ∗hk + ZT

k gk = o(‖hk‖). (2.13)
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Proof From the definition of hk, we have that

B̄kZ
T
k hk + ZT

k gk = 0. (2.14)

The above relation and Assumption 2.2 imply that

ZT
k W ∗ZkZ

T
k hk + ZT

k gk = o(‖hk‖) (2.15)

which yields the lemma because ZkZ
T
k hk = hk. QED

Lemma 2.4 Assume that xk → x∗. If Assumptions 2.1 and 2.2 are satisfied, then

ZT
k (g(x̄k))− A(x̄k)λ

∗) = ZT
k W ∗vk + o(‖xk − x∗‖2) (2.16)

Proof From the assumptions, we have that

ZT
k (g(x̄k))− A(x̄k)λ

∗) = ZT
k gk + ZT

k W ∗(x̄k − xk) + o(‖x̄k − xk‖)
= ZT

k gk + ZT
k W ∗(vk + hk) + o(‖x̄k − xk‖)

= ZT
k W ∗vk + o(‖hk‖) + o(‖x̄k − xk‖)

= ZT
k W ∗vk + o(‖xk − x∗‖). (2.17)

This shows that the lemma is true. QED

Lemma 2.5
ZT

k W ∗dk = −ZT
k gk + o(‖xk − x∗‖). (2.18)

Proof Let λ̄k be defined by

λ̄k = argmin‖g(x̄k)− A(x̄k)λ‖2. (2.19)

It is easy to show that
λ̄k = λ∗ + o(1), (2.20)

and
g(x̄k)− A(x̄k)λ̄k = Z(x̄k)Z(x̄k)

T g(x̄k). (2.21)

Thus

ZT
k W ∗ĥk = −ZT

k W ∗ZkB̄
−1
k ĝk = −ĝk + o(‖ĝk‖)

= −ZkZ̄kZ̄
T
k g(x̄k) + o(‖ĝk‖)

= −ZT
k (g(x̄k)− A(x̄k)λ̄k) + o(‖ĝk‖)

= −ZT
k (g(x̄k)− A(x̄k)λ

∗)− ZT
k A(x̄k)(λ

∗ − λ̄k) + o(‖ĝk‖)
= −ZT

k W ∗vk − ZT
k [A(x̄k)− A(xk)](λ

∗ − λ̄k) + o(‖xk − x∗‖)
= −ZT

k W ∗vk + o(‖x̄k − xk‖) + o(‖xk − x∗‖)
= −ZT

k W ∗vk + o(‖xk − x∗‖). (2.22)
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Consequently,

ZT
k W ∗dk = ZT

k W ∗hk + o(‖xk − x∗‖)
= −ZT

k gk + o(‖xk − x∗‖). (2.23)

QED
Now we can establish the local one step q-superlinearly convergence result for our

algorithm.

Theorem 2.6 If Assumptions 2.1 and 2.2 are satisfied, then

‖xk + dk − x∗‖ = o(‖xk − x∗‖). (2.24)

Proof First we have the relation

ZT
k W ∗dk = −ZT

k gk + o(‖xk − x∗‖)
= −ZT

k (gk − A(xk)λ
∗) + +o(‖xk − x∗‖)

= −ZT
k W ∗(xk − x∗) + o(‖xk − x∗‖), (2.25)

which gives that
ZT

k W ∗(xk + dk − x∗) = o(‖xk − x∗‖). (2.26)

Also we can show that

A(xk)dk = A(xk)vk = −c(xk) = −A(xk)(xk − x∗) + o(‖xk − x∗‖). (2.27)

Thus,
A(xk)(xk + dk − x∗) = o(‖xk − x∗‖). (2.28)

Due to our assumptions, we can see that
(

ZT
k W ∗

A(xk)

)
→

(
Z(x∗)T W ∗

A(x∗)

)
. (2.29)

Because the matrix in the right hand side of the above relation is a non-singular matrix,
it can be shown that

‖xk + dk − x∗‖ = o(‖xk − x∗‖), (2.30)

which indicates that the theorem is true. QED

3 An Example

We use a simple example to show that our technique ensures locally one step Q-superlinearly
convergence. Consider the following 2-dimensional example:

min f(y, z) =
1

2
z2 − yz +

1

6(1− z)3

[
−4(z − y)3 − 6(z − y)2(y − z2)

−12(z − y)(y − z2)2 − 17(y − z2)3 + 3(1− z)−1(y − z2)4
]

(3.31)
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subject to

c(y, z) = y + (1− z)−2[(z − y)2 + (z − y)(y − z2) + 2(y − z2)2] = 0. (3.32)

This problem was given by Yuan(1985) to demonstrate the one-fast-one-slow convergence
phenomenon of the two sided reduced Hessian method.

The solution of (3.31)-(3.32) is x∗ = (0, 0)T . Define

rk =
‖xk+1 − x∗‖∞
‖xk − x∗‖∞ . (3.33)

We apply both the standard two sided reduced Hessian method

xk+1 = xk + vk + hk, (3.34)

and the two sided reduced Hessian method with two null space steps:

xk+1 = xk + vk + hk + ĥk (3.35)

to problem (3.31)-(3.32). Three different initial points (0.1, 0.1)T , (0.2, 0.1)T and (0.0, 0.1)T

are used. The values of ratio rk in all iterations are listed in Table one. Calculations were
terminated when rk < 10−12.

Standard Method Modified Method
k (0.1, 0.1) (0.2, 0.1) (0.0, 0.1) (0.1, 0.1) (0.2, 0.1) (0.0, 0.1)
1 1 1.35 0.141 0.144 1.12 0.137
2 0.1 0.394 1.02 2.70×10−2 0.239 2.09×10−2

3 1 0.662 2.62 ×10−2 6.82×10−4 8.48×10−2 5.45×10−4

4 1.0×10−2 7.28×10−2 0.532 5.21×10−7 8.06×10−3 2.78×10−7

5 1 0.959 2.02×10−4 2.42×10−13 6.81×10−5 8.15×10−14

6 1.0×10−4 4.93×10−3 1 4.46×10−9

7 1.0 1.0 4.57×10−8 7.07×10−18

8 1.0×10−8 2.53×10−5 0.894
9 1.0 0.962 1.67×10−15

10 1.0×10−16 5.94×10−10 1
11 1
12 3.53×10−19

Table 1. Values of rk for two methods with different starting points

From the results listed in Table 1, we can see that the standard two sided reduced
Hessian method converges to the solution in a one-fast-ond-slow pattern, while the method
with two null space steps converges one step q-superlinearly.

Our numerical results in this section and the theoretical analyses in the previous
section show that the reduced Hessian method converges one step q-superlinearly if two
null spaces are taken in every iteration. Our results provide a remedy for the unbalance
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(in the null space and the range space) of convergence of the standard reduced Hessian
method. Our idea show that it can potentially be more efficiently to take two null space
step in every iteration than one null space step. Further works are required to implement
a practical algorithm which would requires some globalization techniques such as line
searches or trust regions.
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