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Abstract

The steepest descent method is the simplest gradient method for optimization. It is
well known that exact line searches along each steepest descent direction may converge very
slowly. An important result was given by Barzilar and Borwein, which is proved to be
superlinearly convergent for convex quadratic in two dimensional space, and performs quite
well for high dimensional problems. The BB method is not monotone, thus it is not easy to
be generalized for general nonlinear functions unless certain non-monotone techniques being
applied. Therefore, it is very desirable to find stepsize formulae which enable fast convergence
and possess the monotone property. Such a stepsize αk for the steepest descent method is
suggested in this paper. An algorithm with this new stepsize in even iterations and exact line
search in odd iterations is proposed. Numerical results are presented, which confirm that
the new method can find the exact solution within 3 iteration for two dimensional problems.
The new method is very efficient for small scale problems. A modified version of the new
method is also presented, where the new technique for selecting the stepsize is used after
every two exact line searches. The modified algorithm is comparable to the Barzilar-Borwein
method for large scale problems and better for small scale problems.
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1 Introduction

The steepest descent method, which can be traced back to Cauchy (1847), is the simplest
gradient method for unconstrained optimization:

min
x∈Rn

f(x), (1.1)

where f(x) is a continuous differential function in Rn. The method has the following form:

xk+1 = xk + αk(−gk), (1.2)

where gk = g(xk) = ∇f(xk) is the gradient vector of f(x) at the current iterate point xk

and αk > 0 is the stepsize. Because the search direction in the method is the opposite of
∗this work is partially supported by Chinese NSF grant 10231060

1



the gradient direction, it is the steepest descent direction locally, which gives the name of the
method. Locally the steepest descent direction is the best direction in the sense that it reduces
the objective function as much as possible.

The stepsize αk can be obtained by exact line search:

α∗k = argmin{f(xk + α(−gk))}, (1.3)

or by some line search conditions, such as Goldstein conditions or Wolfe conditions (see Fletcher,
1987). It is easy to show that the steepest descent method is always convergent. That is,
theoretically the method will not terminate unless a stationary point is found.

However, even for the simplest case when the objective function f(x) is a strictly convex
quadratic, namely

f(x) = gT x +
1
2
xT Hx, (1.4)

where g ∈ <n, H ∈ <n×n symmetric and positive definite, the steepest descent method may not
be very efficient. Assume that we are using exact line searches. Though we can show that the
method converges linearly (see Akaike, 1959), the convergence rate can be very slow, especially
when the condition number of the Hessian matrix H is very large, as the Q-linear fact of the
convergence is

λ1(H)− λn(H)
λ1(H) + λn(H)

(1.5)

where λ1(H) and λn(H) are the largest and smallest eigenvalues of H respectively. Forsythe(1968)
gives an interesting analysis to show that the gradients g(xk) will approach zero eventually along
two direction alternatively.

An surprising result was given by Barzilai and Borwein (1988), where gives formulae for
the stepsize αk which lead to superlinear convergence. The main idea of Barzilai and Borwein’s
approach is to use the information in the previous interation to decide the stepsize in the current
iteration. The iteration (1.2) is viewed as

xk+1 = xk −Dkgk, (1.6)

where Dk = αkI. In order to force the matrix Dk having certain quasi-Newton property, it is
reasonable to require either

min ‖sk−1 −Dkyk−1‖2 (1.7)

or
min ‖D−1

k sk−1 − yk−1‖2, (1.8)

where sk−1 = xk − xk−1 and yk−1 = gk − gk−1, because in a quasi-Newton method we have that
xk+1 = xk −B−1

k gk and the quasi-Newton matrix Bk satisfies the condition

Bksk−1 = yk−1. (1.9)

Now, from Dk = αkI and relations (1.7)-(1.8) we can obtain two stepsizes:

αk =
sT
k−1yk−1

‖yk−1‖2
2

, (1.10)
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and

αk =
‖sk−1‖2

2

sT
k−1yk−1

(1.11)

respectively. For convex quadratic function in two variables, Barzilar and Borwein (1988) shows
that the gradient method (1.2) with αk given by (1.10) converges R-superlinearly and R-order
is
√

2.
The result of Barzila and Borwein(1988) has triggered off many researches on the steepest

descent method. For example, see Dai(2001), Dai et al(2002), Dai and Yuan(2003), Dai and
Zhang(2001), Fletcher (2001), Friedlander et al. (1999), Nocedal et al(2000) and Raydon(1993,
1997).

The BB method performs quite well for high dimensional problems. The BB method is
not monotone, and it is not easy to generalized to general nonlinear functions unless certain
non-monotone techniques being applied. Therefore, it is very desirable to find stepsize formula
which enables fast convergence and possesses the monotone property.

This paper tries to propose such a stepsize αk for the steepest descent method. Due to
the results of Forsythe(1968), the behave of steepest descent method for higher dimensional
problems are essential the same as it for two dimensional problems. Therefore we obtain our
formula for αk based our analysis on two dimension problems. The αk we obtained has the
property that it terminate after three iterations. In the next section we derive the new formula
for αk and give some equivalent conditions. Some numerical results are presented in Section 3
and a brief discussion is given in Section 4.

2 A new stepsize

For the analysis of this section, we assume that the objective function is as follows

f(x) = gT x + xT Hx (2.1)

where g ∈ <2 and H ∈ <2×2 symmetric and positive definite. We want the method to find the
unique minimizer of f(x) in finitely many iterations. It is easy to see that exact line search
must be taken in the last iteration before the algorithm stops at the solution. Without any
pre-provided information, we assume that we also use the exact line search in the first iteration,
as we do not want to through away the fortunate case when the algorithm can find the solution
in the first iteration. Therefore, in general case, the best we can hope is to have an algorithm
that has the following form

x2 = x1 − α∗1g1 (2.2)
x3 = x2 − α2g2 (2.3)
x4 = x3 − α∗3g3, (2.4)

where α∗1 and α∗3 are obtained by exact line searches and x4 is the solution. We need to find a
formula for α2 so that x4 will be the minimizer of the objective function.

The steepest descent method is invariant with respect to orthogonal transformations. To
make our analysis simple, we study the case when g1 and g2 are the two axes. Due to the exact
line search in the first iteration, the gradients g1 and g2 are orthogonal. Therefore we can express
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all the vectors x by linear combinations of g1 and g2. Consider the function

f(x2 + t
g1

‖g1‖2
+ u

g2

‖g2‖2
) =

(
0

‖g2‖2

)T (
t
u

)

+
1
2

(
t
u

)T (
gT
1 Hg1/‖g1‖2

2 gT
1 Hg2/‖g1‖2‖g2‖2

gT
1 Hg2/‖g1‖2‖g2‖2 gT

2 Hg2/‖g2‖2
2

)(
t
u

)
. (2.5)

Due to the exact line search in the first iteration, we have that α∗1 = ‖g1‖2
2/gT

1 Hg1 and gT
1 Hg2 =

−‖g2‖2
2/α∗1. Using the notation α∗2 = ‖g2‖2

2/gT
2 Hg2, we have that

f(x2 + t
g1

‖g1‖2
+ u

g2

‖g2‖2
) =

(
0

‖g2‖2

)T (
t
u

)

+
1
2

(
t
u

)T (
1/α∗1 −‖g2‖2/α∗1‖g1‖2

−‖g2‖2/α∗1‖g1‖2 1/α∗2

)(
t
u

)
. (2.6)

Hence we see that the minimizer of the objective function should be
(

t∗

u∗

)
= − ‖g1‖2‖g2‖2

‖g1‖2
2/α∗2 − ‖g2‖2

2/α∗1

( ‖g2‖2

‖g1‖2

)
. (2.7)

In order to have
x4 = x2 + t∗g1/‖g1‖2 + u∗g2/‖g2‖2, (2.8)

we need the gradient direction g3 parallel to the residual vector x4 − x3, which requires the two
directions (

t∗

u∗

)
−

(
0

−α2‖g2‖2

)
(2.9)

and (
0

‖g2‖2

)
+

(
1/α∗1 −‖g2‖2/α∗1‖g1‖2

−‖g2‖2/α∗1‖g1‖2 1/α∗2

)(
0

−α2‖g2‖2

)
(2.10)

are parallel. These two directions are parallel to the following directions
( ‖g2‖2

‖g1‖2 − α2(‖g1‖2
2/α∗2 − ‖g2‖2

2/α∗1)/‖g1‖2

)
(2.11)

and (
α2‖g2‖2/α∗1‖g1‖2

1− α2/α∗2

)
(2.12)

respectively. Assume that
( ‖g2‖2

‖g1‖2 − α2(‖g1‖2
2/α∗2 − ‖g2‖2

2/α∗1)/‖g1‖2

)
= λ

(
α2‖g2‖2/α∗1‖g1‖2

1− α2/α∗2

)
(2.13)

for some λ ∈ <. From the first line in the above equation we can see that λ = α∗1‖g1‖2/α2.
Substituting this relation into the second line of (2.13), we obtain that

1− α2(1/α∗2 − ‖g2‖2
2/α∗1‖g1‖2

2) = α∗1/α2 − α∗1/α∗2. (2.14)
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The above equation is equivalent to

(1/α∗1α
∗
2 − ‖g2‖2

2/(α∗1‖g1‖2)2)α2
2 − (1/α∗1 + 1/α∗2)α2 + 1 = 0. (2.15)

Since H is positive definite, we have that

Γ = 1/α∗1α
∗
2 − ‖g2‖2

2/(α∗1‖g1‖2)2 > 0. (2.16)

Equation (2.15) has two positive solutions for α2:

(1/α∗1 + 1/α∗2)±
√

(1/α∗1 + 1/α∗2)2 − 4Γ
2Γ

. (2.17)

The smaller one is chosen and it can written as follows:

α2 =
2√

(1/α∗1 − 1/α∗2)2 + 4‖g2‖2
2/‖s1‖2

2 + 1/α∗1 + 1/α∗2
, (2.18)

where s1 = x2−x1 = −α∗1g1. Thus, we have found the formula for α2 which ensures the method
finds the solution after three iterations.

For convex quadratic functions in n(> 2) dimensional spaces, based on (2.18) we suggest the
following method.

Algorithm 2.1. (A new stepsize for steepest descent method)

Step 0 Given an initial point x1, Compute g1, set k = 1.

Step 2 Compute the exact line search step α∗2k−1; Set

x2k = x2k−1 − α∗2k−1g2k−1. (2.19)

Step 3 If g(x2k) = 0 then stop;

Step 4 Compute the exact line search step α∗2k, Set

α2k =
2√

(1/α∗2k−1 − 1/α∗2k)
2 + 4‖g2k‖2

2/‖s2k−1‖2
2 + 1/α∗2k−1 + 1/α∗2k

(2.20)

and
x2k+1 = x2k − α2kg2k. (2.21)

If g2k+1 = 0 then stop;

Step 5 k:= k+1, go to Step 2.

Our analysis given above indicates that the following finite termination result holds.

Theorem 2.1. Assume that Algorithm 2.1 is applied to a convex quadratic function in 2 di-
mensional space. Then there exists k ≤ 4 such that ∇f(xk) = 0.
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From the definition of our stepsize α2k in (2.20), it is easy to see that

1
1/α∗2k−1 + 1/α∗2k

< α2k < min(α∗2k−1, α
∗
2k), (2.22)

which coincides the common sense that a slightly shortened exact line search step would improve
the efficiency of the steepest descent method. Due to relation (2.22) the algorithm is monotone,
namely we have that

f(xk+1) < f(xk) (2.23)

for all k. Furthermore, from the monotone property and the fact that exact line searches are
used in all the odd iterations, it is trivial that the following convergence result holds:

Theorem 2.2. Assume that Algorithm 2.1 is applied to a convex quadratic function in n di-
mensional space. Then the iterate points xk generated by the algorithm either terminates at the
solution or converges to the solution linearly. Futhermore, f(xk+1) < f(xk) for all k.

The formula (2.20) require the exact line search stepsize for all iterations even though it is
only taken as the step in odd iterations. For even iterations, it is used in the calculation of
the stepsize. In the following, we derive an equivalent condition for the stepsize α2k without
computing the exact line search step α∗2k. For convex quadratic functions, it is true that

[g(x2k − αg2k)− g2k]T g2k =
α

α∗2k

[g(x2k − α∗2kg2k)− g(x2k)]T g2k = − α

α∗2k

‖g2k‖2
2 (2.24)

for all α ∈ <. Particularly, we have that

[g(x2k − α∗2k−1g2k)− g2k]T g2k = −α∗2k−1

α∗2k

‖g2k‖2
2. (2.25)

Thus, it follows that
1

α∗2k

=
1

α∗2k−1

(
1− g(x2k − αg2k)T g2k

‖g2k‖2
2

)
. (2.26)

Substituting this relation into (2.20), we obtain that

α2k =
2

1
α∗2k−1

(
2− ḡT

2kg2k

‖g2k‖22

)
+

√
(ḡT

2kg2k)2

(α∗2k−1‖g2k‖22)2
+ 4 ‖g2k‖22

‖s2k−1‖22

, (2.27)

where
ḡ2k = g(x2k − α∗2k−1g2k). (2.28)

Using this formula, we can modify our algorithm as follows.

Algorithm 2.2. (Modified version of our new steepest descent method)

Step 0 Given an initial point x1, Compute g1, set k = 1.

Step 2 Compute the exact line search step α∗2k−1; Set

x2k = x2k−1 − α∗2k−1g2k−1. (2.29)
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Step 3 If g(x2k) = 0 then stop;

Step 4 Define s̄2k = −α∗2k−1g2k.
Compute g(x2k + s̄2k) and let

β =
g(x2k + s̄2k)T g2k

‖g2k‖2
2

. (2.30)

Compute

α2k =
2

1
α∗2k−1

(2− β) +
√

(β)2

(α∗2k−1)2
+ 4 ‖g2k‖22

‖s2k−1‖22

(2.31)

and
x2k+1 = x2k − α2kg2k. (2.32)

If g2k+1 = 0 then stop;

Step 5 k:= k+1, go to Step 2.

The stepsize (2.31) is exactly the same as the one given in (2.20) if the objective function
f(x) is convex quadratic. To generalizing our approach to general nonlinear functions, from
(2.15), for the even iterations it is reasonable to impose the following line search conditions

(
1− α2k

α∗2k−1

)
g(x2k − α2kg2k)T g(x2k)

‖g2k‖2
2

=
‖g2k‖2

2

‖s2k−1‖2
2

α2
2k, (2.33)

and g(x2k−α2kg2k)T g(x2k) > 0. It is easy to see that such an α2k exists in the interval between
zero and the smallest positive stationary point of f(x2k − αg2k).

3 Numerical Results

We compare the numerical performance of our algorithm with the Barzilar-Borwein (BB) method,
the Alternate stepsize gradient method (AS) by Dai(2001) and the Alternative minimization
method (AM) by Dai and Yuan. Two versions of the BB method are compared, which are
called BB1 and BB2 where (1.10) and (1.11) are used respectively. The Alternate stepsize
gradient method uses exact line search on odd iterations and use BB stepsize (1.10) on even
iterations. The Alternative minimization method carries out exact line searches in odd iterations
and minimizes the norm of the gradient in even iterations. Namely,

αAM
k =





‖gk‖22
gT

k Hgk
if k is odd,

gT
k Hgk

gT
k H2gk

if k is even .
(3.1)

For our new method, we also implement two versions. Version A is the un-modified version of
Algorithm 2.1. While version B uses one stepsize in the form of (2.20) after every two exact line
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searches. Namely, the modified algorithm choosed the stepsizes by

α3k−2 = α∗3k−2, (3.2)
α3k−1 = α∗3k−1, (3.3)

α3k =
2√

(1/α∗3k−1 − 1/α∗3k)
2 + 4‖g3k‖2

2/‖s3k−1‖2
2 + 1/α∗3k−1 + 1/α∗3k

. (3.4)

The problem we used to compare the algorithms are the following

f(x) = (x− x∗)T Diag(σ1, · · · , σn)(x− x∗). x ∈ <n. (3.5)

We consider the cases when n = 2, 3, 10, 100, 1000, 10000. The solution vector x∗i (i = 1, ..., n) ∈
(−5, 5) are randomly generated. We let σi = i and σn = Cond(= 10, 100, 1000, 10000) which is
the condition number of the Hessian of function f(x). σi(i = 2, · · · , n− 1) are randomly chosen
in the interval (1, σn). For all problems the initial point is the zero vector (0, · · · , 0)T and the
stop condition is ‖gk‖ ≤ 10−8.

The numerical results are reported in Table 1. For each case, 10 runs are made and average
numbers of iterations required by each algorithm are listed in the Table.

TABLE I – Iteration numbers for different methods

n σn BB1 BB2 AS AM 2.1 (A) 2.1 (B)
2 10 8.4 7.2 6.3 9.7 3 4
2 100 6 6 5 8.8 3 4
2 1000 6 5.8 5 8 3 4
2 10000 4.7 4 3.8 7.4 3 3.9
3 10 20.2 19.4 18.2 34.3 13.2 16.1
3 100 24.6 23.2 16.7 88.1 8.2 21
3 1000 27.3 23.2 19.8 191.3 11.1 23.4
3 10000 28.3 19.9 18.8 1237 7.6 19.5
10 10 35 35 33.2 48.8 41.4 34.2
10 100 113.1 114.6 100.6 132.8 144.8 109.2
10 1000 323.7 327.5 260.5 559.5 871.2 350
10 10000 659.9 649.8 537.5 2235.7 3085.2 1089.5
100 10 41.3 41.4 42.9 57.4 40.8 39
100 100 141.6 141.2 138.2 157.2 219.6 134.1
100 1000 464.2 448.6 457.8 695.7 1714.4 517.6
100 10000 1253.5 1063.9 1304.4 4187 16570.6 2012.3
1000 10 43.4 42.1 42 59.4 42.8 41.8
1000 100 147 148.2 150.9 167.9 234.2 140.3
1000 1000 401.9 493.1 501.8 739.4 1875.2 561.5
1000 10000 1434.8 1324.6 1303.6 4380.6 14630.5 2177.2
10000 10 46.1 42.8 44.9 62 45 43.4
10000 100 159.8 158.9 158.1 172 263.1 151.4
10000 1000 529.6 497.1 563.1 775.6 1930 553.5
10000 10000 1570.7 1335.1 1413.7 4332.8 17293.6 2136.4
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The numerical results confirmed that the new stepsize ensures the solution can be found
within 3 iterations. The results also showed that the new method is very efficient for small scale
problems. For large scale problems, the new method is also as efficient as the BB methods if the
condition number of the Hessian of the objective function is not large. If the condition number
of the Hessian of the objective function is very large, especially for large scale problems, the new
method is much worse than the BB method. The modified version of our algorithm performed
quite well. It is comparable to the BB method for large scale problems and better for small
scale problems. Please notice that both versions of our new method have the monotone property
which the BB method does not have.

4 Discussion

In this paper we have suggested a new stepsize for the steepest descent method. An algorithm
with this new stepsize in even iterations and exact line search in odd iterations is proposed.
The improvement of the modified version of our new method over the unmodified version is
unexpected. It might be interested to investigate other possibilities, such as taking a type (2.20)
step after every m exact line search iterations. Another possibility is to suggest a stepsize
formula for αk which depends on the pervious two exact line search steps α∗k−1 and α∗k−2.
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