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Abstract

The Nash equilibrium problem is fundamental in economics and it is also a very special
optimization problem. In this paper, we consider the application of trust region methods
to Nash equilibrium problems. We propose a Jacobi-type trust region method for their
solutions. The method includes different trust regions for each player, and the trial step is
computed and accepted (or rejected) based on each individual utility function. An overall
merit function is used and a non-standard technique is suggested to update the trust region
bounds. Under certain conditions, we prove the global convergence and local superlinear
convergence of the method.
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1 Introduction

The Nash Equilibrium Problem[19] is about N players (v = 1, ..., N), where each player v
controls variable xv ∈ <nv and wants to minimize his own utility function uv. Let n =

∑N
i=1 nv

be the total number of variables and x be the vector of all variables

x =




x1,
...

xN


 ∈ <n . (1.1)

The utility function uv for the v-th player depends on all the variables x. Since the v-th player
controls variables xv, it is convenient to partition the variables x into two subsets: xv and x−v,
where x−v are all the variables in x except those in xv. Thus, (xv,x−v) is a decomposition of x.
Using such notations, the utility function uv(x) for the v-th player can be written as

uv(xv,x−v) . (1.2)
∗partly supported by Chinese NSF grants 10231060,10831006 and the Knowledge Innovation Program of CAS
†currently visiting D.A.M.T.P, University of Cambridge, England.
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The aim of the v-th player is to minimize uv(x) by controlling the variables in xv, namely

min
xv∈Xv

uv(xv,x−v) , (1.3)

where Xv ⊂ <nv is the set of possible strategies of player v. Normally Xv is a compact convex
set. Often, Xv is given by

Xv = {xv | cv(xv) = 0, hv(xv) ≤ 0, xv ∈ <nv} , (1.4)

where cv ∈ <lv and hv ∈ <mv are continuous vector functions defined in <nv with lv and mv

being two positive integers. A Nash equilibrium point is a point x∗ such that (x∗)v is a solution
of

min
xv∈Xv

uv(xv, (x∗)−v) (1.5)

for all v = 1, 2, ..., N .
The Nash equilibrium problem (NEP)is fundamental in economics, and it has been studied

extensively with many extensions, for example see [4, 9, 13, 14, 15, 16, 18, 21]. In this paper
we propose a trust region algorithm for solving NEP. Trust region algorithms have been used
successfully for nonlinear optimization, following the pioneer work of Powell [22, 23] and Fletcher
[11, 12]. The general frame of trust region algorithms is as follows. At each iteration the original
nonlinear (difficult) problem is replaced by an approximate model which is easy to solve, and
then the approximate model is solved with the “trust region” constraint (requiring the solution
of the approximate model in a region that is trusted). The solution of the model problem is
called the trust region step, and it is either accepted or rejected, depending on whether the
trust region step gives an acceptable improvement to the original problem. The trust region
itself is also updated from iteration to iteration based on the goodness of the trial step. Trust
region algorithms for nonlinear optimization have attracted many researches, for example see
[1, 2, 3, 5, 6, 24, 25]. For detailed discussions on trust region algorithms, readers should refer to
the nice monograph of Conn, Gould and Toint [7].

The NEP can be formulated as a variational inequality (VI) problem or a complementarity
problem (CP), which, by differentiable merit functions, can be cased as either constrained or un-
constrained optimization problems to which trust region methods can be applied. For example,
see Facchinei and Pang [10] and Majig and Fukushima [17]. But, such indirect approaches need
to minimize objective functions that depend on the gradients of the utility functions. Hence
the application of standard trust region algorithms for optimization would require the Hessian
matrices of all the utility functions. Another possibility is to reformulate the NEP into an opti-
mization problem by using the Nikaido-Isoda function, and then to apply a standard trust region
method for the corresponding optimization problem. In this approach, the objective function is

V (x) =
N∑

v=1

[
uv(xv,x−v)− min

yv∈Xv

uv(yv,x−v)
]

. (1.6)

The definition of V (x) depends on minyv∈Xv uv(yv,x−v) and the application of a standard trust
region for minV (x) will be very complicated because the evaluation of the objective function
itself needs to solve N minimization problems minyv∈Xv uv(yv,x−v), not to mention that the
gradient ∇V (x) is very difficult to obtain.

To the author’s knowledge, no trust region methods have been proposed to solve equilibrium
problems directly. We believe that it is an interesting question to ask whether trust region

2



algorithms, a class of widely applied algorithms for nonlinear optimization, can be made suitable
for these problems. This is the motivation of the current paper, and we will give a Jacobi-
type trust region algorithm for solving Nash equilibrium problems and study the convergence
properties of the method.

The paper is organized as follows. In the next section, we give a Jacobi type trust region
algorithm for Nash equilibrium problems. Our trust region method uses different trust regions
for each player, and the trial step for the variables controlled by each player is computed and
accepted (or rejected) based on the corresponding individual utility function. Then, an overall
merit function based on all the utility functions is defined for the updating of the trust regions.
A non-standard technique is suggested to update the trust region bounds. In Section 3, we prove
the global convergence of the method, and local convergence result is established in Section 4.
In Section 5, possible generalizations of our method are discussed briefly.

2 A Jacobi-type Trust Region Algorithm for NEP

The trust region approach imposes constraints on the step-lengths of the changes to the variables.
At the k-th iteration, assume that the current variables of the player v is (x(k))v. Let the bound
on the norm of the changes to the variables controlled by the v-th player at the k-th iteration
be denoted by ∆v,k. Thus the trust region subproblem for the v-th player at the k-th iteration
is

min φv, k(dv) (2.1)
s. t. ‖dv‖2 ≤ ∆v, k (2.2)

(x(k))v + dv ∈ Xv , (2.3)

where φv, k(dv) is an approximation to the utility function uv((x(k))v + dv, (x(k))−v), dv ∈ <nv .
Define

gv, k =
∂uv(x)

∂xv
|x=x(k) , (2.4)

A natural choice for φv, k(dv) is the second order model

φv, k(dv) = uv(xk) + dT
v gv, k +

1
2
dT

v Bv, kdv, dv ∈ <nv , (2.5)

where Bv, k ∈ <nv×nv is a symmetric matrix which approximates the Hessian matrix ∂2uv(x)
∂x2

v
|x=x(k) .

Let dv, k be the solution of problem (2.1). We denote the predicted reduction of the v-th utility
function by

Predv, k = φv, k(0)− φv, k(dv, k), (2.6)

and the actual reduction by

Aredv, k = uv((x(k))v, (x(k))−v)− uv((x(k))v + dv, k, (x(k))−v). (2.7)

The ratio between these two reductions plays an important role in a trust region algorithm.
Letting

rv, k =
Aredv, k

Predv, k
, (2.8)
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we define

(x(k+1))v =

{
(x(k))v + dv, k, if rv, k > 0,
(x(k))v otherwise.

(2.9)

The above definition of the new iteration point xk+1 is based on the reduction of the utility
function of each player, but, when an overall step is taken, we can have uv(x(k+1)) > uv(x(k))
even when rv, k > 0, because of the contributions to x(k+1) from the other players. Hence
we need to use criteria other than rv, k to update the trust region bounds ∆v, k. One natural
merit function is V (x) defined in (1.6), but the calculation of V (x) requires the solutions of N
minimization problems. Thus, we have to find an easy way to compute the merit function.

Define ΠXv to be the projection mapping from <nv onto Xv, namely

ΠXv(y) = argminx∈Xv
||x− y||2, ∀ y ∈ <nv . (2.10)

Define the vector function

F (x) =




ΠX1

(
x1 − ∂u1(x)

∂x1

)
− x1

ΠX2

(
x2 − ∂u2(x)

∂x2

)
− x2

...
ΠXN

(
xN − ∂uN (x)

∂xN

)
− xN



∈ <n , (2.11)

and the merit function

ψ(x) = ‖F (x)‖2
G =

N∑

v=1

∥∥∥∥ΠXv

(
x− ∂uv(x)

∂xv

)
− x

∥∥∥∥
2

Gv

, (2.12)

where G = Diag(G1, G2, ..., GN ) with Gv ∈ <nv×nv (v = 1, ..., N) being fixed symmetric positive
definite matrices, and the norm ‖g‖G denotes

√
gT Gg. Because the step definition (2.9) does

not ensure a reduction of the merit function, it seems reasonable for us to reduce the trust region
bounds if no sufficient reduction has been achieved for the best merit function up to the current
iteration. Let

ηk = min
1≤i≤k

ψ(xi) , (2.13)

and

Predk =
N∑

v=1

Predv, k . (2.14)

We define the ratio
ρk =

ηk − ψ(xk+1)
Predk

, (2.15)

and we always reduce all the trust region bounds ∆v, k unless

ρk ≥ β1 , (2.16)

where β1 ∈ (0, 1) is a constant. We let the trust region bounds have the form

∆v, k =
1

τv + tv, k
‖ĝv, k‖2 (v = 1, 2, ..., N), (2.17)
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for some positive constant τv > 0, where tv, k > 0 is updated from iteration to iteration and

ĝv, k = (x(k))v −ΠXv((x
(k))v − gv, k) . (2.18)

It is easy to see that ĝv, k = gv, k if both (x(k))v and (x(k))v − gv, k are in Xv. We call ĝv, k the
projected partial derivative. We adjust the ratio between the trust region bound ∆v, k and the
normal of projected partial derivative ‖ĝv, k‖2 instead of the trust region bound itself. Further,
the ratio between ∆v, k and ‖ĝv, k‖2 is not increased unless both (2.16) holds and rv, k is larger
than certain small positive number. Specifically, for each v ∈ {1, 2, ..., N}, we let

tv, k+1 = tv, k + δv (v = 1, 2, ..., N), (2.19)

if (2.16) fails, where each δv is a positive constant. Alternatively, if inequality (2.16) holds, we
let

tv, k+1 =





max[tv, k − δv, 0], if rv, k ≥ β2;
tv, k, if rv, k ∈ (0, β2];
tv, k + δv, if rv, k ≤ 0,

(2.20)

where β2 ∈ (0, 1) is a constant. On the other hand, in a classical trust region algorithm for
nonlinear unconstrained optimization, if a reduction in the trust region bound is needed, the
trust region bound will be reduced by a fraction (say, a half). The idea for the classic approach
is to force a bound on the sum of the trial steps that do not give a sufficient reduction in the
objective function in order to ensure the iterates converging to a stationary point. The update
formulae (2.19) and (2.20) imply that, even the trust region bound is reduced at every iteration,
we have ∞∑

k=1

∆v, k = ∞ , (2.21)

provided that ‖ĝv, k‖2 is bounded away from zero.

Algorithm 2.1. (A Jacobi-Type Trust Region Algorithm For NEP)

Step 1 Given an initial feasible point x(1) ∈ X1 ×X2 · · · ×XN .
Choose positive constants τv, δv, tv,1 (v = 1, 2, ..., N);
Choose β1 ∈ (0, 1), β2 ∈ (0, 1). Set k := 1.

Step 2 If
∑N

v=1 ‖ĝv, k‖2 = 0 then stop.
Solve (2.1) obtaining dv, k for all v = 1, ..., N .

Step 3 Compute rv, k by (2.8), and define the next iterate point x(k+1) by (2.9).

Step 4 If (2.16) holds define tv, k+1 by (2.20) otherwise by (2.19).

Step 5 Generate Bv, k+1. Set k := k + 1. Go to Step 2.

The algorithm terminates if an iterate x(k) satisfies

ĝv, k = 0, ∀v = 1, 2, ..., N. (2.22)

We define such a point as a stationary point.
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Definition 2.1. We call x∗ is a stationary point of the Nash equilibrium problem if x∗ satisfies
that

F (x∗) = 0, (2.23)

where F (x) is defined by (2.11).

The solution of the Nash equilibrium problem is also a stationary point. If, for each v, the
utility function uv(xv, x−v) as a function xv is convex, a stationary point is also the solution of
NEP.

In the next section, we show that under certain conditions, the iterates generated by the
above algorithm are not bounded away from stationary points.

3 Convergence Properties

One nice property of trust region methods for nonlinear optimization is that the predicted
reduction of the trust region subproblem can be estimated by the residual of the optimality
conditions. Here, we establish a similar result for the trust region subprolems for the NEP.

First we need the following simple result.

Lemma 3.1. Assume that (x(k))v ∈ Xv, we have that

gT
v, kĝv, k ≥ ‖ĝv, k‖2

2. (3.1)

Proof. For any y ∈ Xv, it follows from the definition of the projection ΠXv that

(y −ΠXv(y))T (x−ΠXv(y)) ≤ 0, ∀x ∈ Xv. (3.2)

Let y = (x(k))v − gv, k and x = (x(k))v in the above inequality, we obtain that
(
(x(k))v − gv, k −ΠXv((x

(k))v − gv, k)
)T (

(x(k))v −ΠXv((x
(k))v − gv, k)

)
≤ 0, (3.3)

which can be rewritten as

gT
v, k

(
(x(k))v −ΠXv((x

(k))v − gv, k)
)
≥

∥∥∥(x(k))v −ΠXv((x
(k))v − gv, k)

∥∥∥
2

2
. (3.4)

This shows that the lemma is true. 2

In order to analyze the convergence properties of our algorithm given in the previous section,
we need the following fundamental result which is an extension of a result given by Powell [22].

Lemma 3.2. Let dv, k be the solution of subproblem (2.1). Expression (2.4) has the property

Predv, k ≥ 1
2
‖ĝv, k‖2 min

[
∆v, k,

‖ĝv, k‖2

max[1, ‖Bv, k‖2]

]
. (3.5)

Proof. From the previous lemma and the definition of dv, k, we have

φv, k(dv, k) = min
‖dv‖2≤∆v, k, (x(k))v+dv∈Xv

φv, k(dv)

≤ min
α∈(0,1],‖αĝv, k‖2≤∆v, k

φv, k(−αĝv, k)

≤ min
α∈(0,1],‖αĝv, k‖2≤∆v, k

[
uv((x(k))v)− α‖ĝv, k‖2

2 +
1
2
α2‖Bv, k‖2‖ĝv, k‖2

2

]
. (3.6)
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If ∆v, k ≤ ‖ĝv, k‖2, it follows from Powell [22] and the above inequality that

Predv, k ≥ 1
2
‖ĝv, k‖2 min

[
∆v, k,

‖ĝv, k‖2

‖Bv, k‖2

]
, (3.7)

which implies (3.5). Now we assume that ∆v, k > ‖ĝv, k‖2. In this case, we have that

Predv, k ≥ φv, k(0)− φv, k

(
− 1

max[1, ‖Bv, k‖2]
ĝv, k

)

=
1

max[1, ‖Bv, k‖2]

(
1− ‖Bv, k‖2

2max[1, ‖Bv, k‖2]

)
‖ĝv, k‖2

2

≥ 1
2

‖ĝv, k‖2
2

max[1, ‖Bv, k‖2]
. (3.8)

This completes our proof. 2

Similar to trust region algorithms for unconstrained optimization problems, we do not need
to solve the subproblem (2.1) exactly as long as we can compute an approximate solution dv, k

that satisfies a weaker form of condition (3.5). Specifically, it is quite common for some practical
trust region algorithms to solve the trust region subproblem (2.1) approximately so that Predv, k

satisfies the condition

Predv, k ≥ β3‖ĝv, k‖2 min
[
∆v, k,

‖ĝv, k‖2

1 + ‖Bv, k‖2

]
, (3.9)

where β3 ∈ (0, 0.5] is a constant. This inequality implies the following result:

Corollary 3.1. Let dv, k be an inexact solution of subproblem (2.1) such that (3.9) holds. Then
we have the bound

Predv, k ≥ β3‖ĝv, k‖2
2 min

[
1

τv + tv, k
,

1
1 + ‖Bv, k‖2

]
. (3.10)

Lemma 3.3. Let dv, k be an inexact solution of (2.1) such that (3.9) holds. If Bv, k and ∂2uv(x)
∂x2

v

are uniformly bounded and if
lim

k→∞
tv, k →∞ , (3.11)

then
lim

k→∞
rv, k = 1 . (3.12)

Proof. Since Bv, k are bounded uniformly, it follows from (2.17) and (3.10 ) that

Predv, k ≥ β3‖ĝv, k‖2
2

1
τv + tv, k

= β3‖ĝv, k‖2∆v, k = β3(τv + tv, k)∆2
v, k , (3.13)

for sufficiently large k. The uniformly boundedness of Bv, k and ∂2uv(x)
∂x2

v
imply that

|Aredv, k − Predv, k| = O(∆2
v, k) . (3.14)

Therefore, from (3.11), (3.13) and (3.14) we deduce that (3.12) is true. 2

We make the following assumptions:
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Assumption 3.1. Let {x(k), k = 1, 2, ...} be generated by our algorithm. We assume that

1. There exists a bounded convex set S ⊂ <n such that x(k) ∈ S for all k,

2. The functions uv(x) are continuously differentiable in S for all v. Furthermore, ∂2uv(x)
∂x2

v

are uniformly bounded for all x ∈ S.

3. Bv, k are bounded uniformly for all v and all k.

Now, we are going to show that under certain conditions the points {xk} generated by our
method are not bounded away from stationary points.

Assumption 3.1 implies that there exists a positive number β4 such that
∥∥∥∥
∂2uv(x)

∂x2
v

∥∥∥∥
2

≤ β4 , ∀x ∈ S, v = 1, 2, ..., N, (3.15)

and
1 + ‖Bv, k‖2 ≤ β4 , ∀ k = 1, 2, ..., v = 1, 2, ..., N. (3.16)

Lemma 3.4. Assume that all the conditions in Assumption 3.1 are satisfied, and that every
dv, k satisfies (3.9). Then formulae (2.9) provides

(xk+1)v = (xk)v + dv, k, (3.17)

if

∆v, k ≤ β3

2β4
‖ĝv, k‖2 , (3.18)

where β4 is the positive constant in (3.15) and (3.16).

Proof. Because ∆v, k ≤ β3‖ĝv, k‖2/(2β4) ≤ ‖ĝv, k‖2/β4, it follows from (3.9) and (3.16) that

Predv, k ≥ β3‖ĝv, k‖2∆v, k . (3.19)

On the other hand, the agrement between the first order terms of Aredv, k and Predv, k provides

|Aredv, k − Predv, k| ≤ β4‖dv, k‖2
2 ≤ β4∆2

v, k. (3.20)

Inequalities (3.18)-(3.20) imply

|1− rv, k| ≤ β4

β3

∆v, k

‖ĝv, k‖2
≤ 1

2
, (3.21)

so rv, k is at least 0.5 in formula (2.9). This completes our proof. 2

The projected Cauchy step is the best point along the negative projected directional derivative
direction within the trust region ball. Namely the Cauchy step dC

v, k = −α∗v, kĝv, k is defined by

φv, k(dC
v, k) = min

α>0,‖αĝv, k‖2≤∆v, k

φv, k(−αĝv, k, ). (3.22)

We also assume that the computed trial step dv, k is not worse than the projected Cauchy Step,
which is the condition:
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Assumption 3.2. Assume that every trial step dv, k generated by our method has the property

φv, k(dv, k) ≤ φv, k(dC
v, k). (3.23)

Now we can establish our main global convergence result as follows.

Theorem 3.1. Denote the Jacobi matrix of F (x) by J(x), if Diag(δ1G1, δ2G2, ..., δNGn)J(x)
is uniformly positive definite for all x ∈ S, and if all the conditions in Assumptions 3.1 and 3.2
are satisfied, then the iterate points {xk} generated by our method are not bounded away from
stationary points, namely either ψ(xk) = 0 for some k or

lim
k→∞

ηk = 0 . (3.24)

Proof We prove the theorem by contradictions. If the theorem is not true, there exists a
positive constant β5 such that

ψ(xk) ≥ β5 (3.25)

for all k. Thus, there is another positive constant β6 such that

N∑

v=1

‖ĝv, k‖2
2 ≥ β6 , (3.26)

holds for all k.
First, we assume that there are only finitely many k such that ρk ≥ β1. In this case, there

exists an integer k̄ such that

tv, k = tv,k̄ + δv(k − k̄) ∀ k ≥ k̄, v = 1, 2, ..., N. (3.27)

The above relation gives that

∆v, k =
‖ĝv, k‖2

τv,k̄ + δv(k − k̄)
=
‖ĝv, k‖2

δvk
+ O

(‖ĝv, k‖2

k2

)
→ 0 . (3.28)

Thus, Lemma 3.3 implies that there exists k̂ ≥ k̄ such that (3.17) holds for all k ≥ k̂ and all
v = 1, 2, ..., N . Moreover, for sufficiently large k, it follows from (3.27) that

dC
v, k = − ĝv, k

τv,k̄ + δv(k − k̄)
(3.29)

and

φv, k(dC
v, k) = − ‖ĝv, k‖2

2

τv,k̄ + δv(k − k̄)
+ O(∆2

v, k) = −‖ĝv, k‖2
2

δvk
+ O

(‖ĝv, k‖2
2

k2

)
. (3.30)

Our assumption φv, k(dv, k) ≤ φv, k(dC
v, k) implies that

ĝT
v, kdv, k + O(∆2

v, k) ≤ −‖ĝv, k‖2
2

δvk
+ O

(‖ĝv, k‖2
2

k2

)
. (3.31)

which gives

ĝT
v, kdv, k ≤ −‖ĝv, k‖2

2

δvk
+ O

(‖ĝv, k‖2
2

k2

)
. (3.32)
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Due to the fact that ‖dv, k‖2 ≤ ∆v, k, we have that

dv, k = − ĝv, k

δvk
+ O

(‖ĝv, k‖2

k2

)
. (3.33)

This relation can be rewritten as

F (xk) = −kDiag(δ1I, δ2I, ..., δNI)dk + O

(‖ĝv, k‖2

k

)

= −kDiag(δ1I, δ2I, ..., δNI)dk + O(‖dk‖2) . (3.34)

Equation (3.33) also implies that

Predv, k = −‖ĝv, k‖2
2

δvk
+ O(‖dv, k‖2

2) , (3.35)

and

k‖dv, k‖2
2 =

‖ĝv, k‖2
2

δ2
vk

+ O

(‖ĝv, k‖2
2

k2

)
. (3.36)

The above two relations yield that

k‖dk‖2
2 ≥ 1

max1≤v≤N δv
Predk + O(‖dk‖2

2)

≥
∑N

v=1 ‖ĝv, k‖2
2

k max1≤v≤N δ2
v

+ O(‖dk‖2
2) . (3.37)

On the other hand, under the assumption on J(x) in the theorem, there exists a positive
constant β7 such that

dT Diag(δ1G1, δ2G2, ..., δNGn)J(x)d ≥ β7‖d‖2
2 (3.38)

holds for all x ∈ S and all d ∈ <n. Thus, from (3.34) and (3.38) we can obtain that

ψ(xk+1) = ‖F (xk+1)‖2
G = ‖F (xk + dk)‖2

G

= ‖F (xk) + J(xk)dk‖2
G + O(‖dk‖2

2)
= ‖F (xk)‖2

G + 2F (xk)T GJ(xk)dk + O(‖dk‖2
2)

= ψ(xk)− 2kdT
k Diag(δ1G1, δ2G2, ..., δNGn)J(xk)dk + O(‖dk‖2

2)
≤ ψ(xk)− 2kβ7‖dk‖2

2 + O(‖dk‖2
2) (3.39)

for all large k. Inequalities (3.39) and (3.37) show that

ψ(xk+1) ≤ ψ(xk)−
β7

∑N
v=1 ‖ĝv, k‖2

2

k max1≤v≤N δ2
v

, (3.40)

for all sufficiently large k, which is impossible because of (3.26) and the facts that β7 > 0 and
δv > 0 for all v. The contraction shows that (3.24) is true if there are only finitely many k such
that ρk ≥ β1.

To complete our proof, we now assume there are infinitely many k such that ρk ≥ β1. Define
the set

I = {k | ρk ≥ β1 } . (3.41)
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The definition implies that
ηk − ηk+1 ≥ β1Predk, (3.42)

Thus ∑

k∈I
Predk < +∞, (3.43)

which in turns shows that ∑

k∈I
Predv, k < +∞, (3.44)

for all v = 1, 2, ..., N . Because ∆v, k ≤ 1
τv
‖ĝv, k‖2, we can see that

∑

k∈I
∆v, k‖ĝv, k‖2 < +∞, (3.45)

for all v = 1, 2, ..., N . Therefore

∑

k∈I

‖ĝv, k‖2
2

τv + tv, k
< +∞ , v = 1, 2, ..., N. (3.46)

Thus,
∑

k∈I

N∑

v=1

‖ĝv, k‖2
2

τv + tv, k
< +∞ , (3.47)

which gives that ∑

k∈I

1
max1≤v≤N [τv + tv, k]

∑

1≤v≤N

‖ĝv, k‖2
2 < +∞ . (3.48)

The above inequality and (3.26) imply that

∑

k∈I

β6

max1≤v≤N [τv + tv,1] + k max1≤v≤N δv
< +∞ . (3.49)

Therefore, it follows that ∑

k∈I

1
k

< ∞ . (3.50)

Let Ik = |I ∩ {i | 1 ≤ i ≤ k}| the be number of indices that in I which is not greater than k.
Due to relation (3.50), we have that

lim
k→∞

Ik

k
= 0 . (3.51)

This shows that
lim

k→∞
tv, k

k
= δv. (3.52)

Thus, we have

∆v, k =
‖ĝv, k‖2

δvk
+ o

(‖ĝv, k‖2

k

)
. (3.53)

Now, the above relation is very similar to (3.28). Hence, similar to the first part of our proof,
we can also derive that (3.40) holds for all large k. This is a contradiction because ψ(xk) is
bounded below. Thus, we see that the theorem is true. 2
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For the special case when J(x) is positive definite, we can choose G = I and δ1 = δ2 = ... = δN .
Then, we can easily see that the convergence result follows.

Corollary 3.2. If J(x) is uniformly positive definite for all x ∈ S,and if all the conditions in
Assumptions 3.1 and 3.2 are satisfied, we can let Gv = I for all v and let δv = δ for all v so that
the iterate points {xk} generated by our method are not bounded away from stationary points.

4 Discussion

We have given a Jacobi type trust region algorithm for Nash Equilibrium Problems. Under
certain conditions we established the convergence results for our method. The Jacobi idea
had been used for Nash equilibrium problems. For example, Facchinei [8] presented a Jacobi
type Levenberg-Marquardt method for genralized Nash equilibrium problems. Actually, it was
Facchinei’s talk [8] that motivated this paper. Our contribution is combining the Jacobi idea
and trust region to Nash equilibrium problems. Moreover, our Jacobi process does not need to
solve an optimization problem in the inner cycle. Instead, we only need to change the control
variables of each players by solving a trust region subproblem, which is an approximation to
the original minimization problem of corresponding player. We also proposed a new update
technique for the trust region bounds. The updating technique used in the paper is to adjust
∆v, k indirectly by increasing or decreasing tv, k in (2.20). Of course, one can also update each
trust region by the standard techniques, such as doubling or halving the trust region radius
based on ratio of the actual reduction and the predicted reduction [7, 26].

One natural variance of our method is to consider a Gauss-Seidel type of trust region method.
The obvious difficult is that the each player v will have their individual up to date point for
defining the merit function to adjust the trust region, which would make the adjusting of trust
regions more complicated.

Another possible extension of the current work is to apply trust region to the general equilib-
rium problem[20], namely finding x∗ ∈ C such that

f(x∗, y) ≥ 0 , ∀ y ∈ C , (4.1)

where C is a nonempty closed convex subset of Rn and f(x, y) is a continuous function from
C×C to R with the following properties: 1) f(x, .) is convex on C for all x ∈ C and f(x, x) = 0
for all x ∈ C.
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