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Abstract
This paper discusses some properties of trust region algorithms for nonsmooth optimization. The
problem is expressed as the minimization of a function h(f(z)), where h(.) is convex and f is a
continuously differentiable mapping from R" to R™. Conditions for the convergence of a class of

algorithms are discussed, and it is shown that the class includes minimax and L; problems.
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1. Introduction

Many papers have been published on trust region algorithms, for example see Moré(1982). Powell
(1970, 1975, 1983) and Sorensen (1982), but most attention has been given to the smooth case. We

investigate some properties of trust region algorithms for nonsmooth cases. The problem we went to

solve is

in h(f(z)), (1.1)
where h(.) is a convex function defined on ™ and is bounded below; f(z) = (fi(z), ..., fm(z))T is a
map from R" to R™ and f;(z)(i =1,...,m) are all continuously differentiable functions on R".

The trust region algorithms are iterative and an initial point z; € R™ should be given. The methods
generate a sequence of points z(k = 1,2,...) in the following way. At the beginning of k—th iteration,
zr, A and By, are available, where Ay > 0 is a step-bound and By, is an n x n real symmetric matrix.

Let d;, be a solution of

1
min h(f(xg) + V7 fxg)d) + 5dTBkd, (1.2)
subject to
Id]] < Ag. (1.3)
Here ||.|]| may be any norm in " space. Let
_ Joet+d,  if (f(zk)) > h(f(zk + di))
Tht1 = {xk, otherwise . (14)

It is noted that our choice of x4 is different from Powell’s (1983). He let xxy1 = xy + dj, if and only
if the inequality
h(f(zx + di) < h(f(2k) — c[h(f(x1)) — o (d)] (1.5)

holds for some constant ¢ € (0, 1), where ¢ (d) is defined by
1
$r(d) = h(f(zx) + VT f(zr)d) + §dTBkd- (1.6)

Thus, because our condition for letting xp1 = xp + dj is weaker than Powell’s, our algorithms let
ZTp41 = Tx + di, more often, and we have the desirable property of accepting any trial vector of variables
that reduces the objective function.

Similar to Powell (1975), let Akt satisfy

el < Agsr < ealld]l (1.7)
if
h(f(zk)) — b(f(zx + di)) > ca[h(f(zr)) — dr(di)], (1.8)
otherwise let
cslldil] < Apgr < calldi]l, (1.9)



where ¢;(1 = 1,2,3,4) are positive constant satisfying ¢; > 1,0 < 1 and ¢3 < ¢4 < 1. We also let
Ap(k=1,2,...) satisfy

Ay <A. (1.10)
for some positive constant A. Our theory applies to several techniques for generating By 1.

In section 2, conditions for convergence are discussed. Under the assumption that

k
IBill < s +cs y_ A (1.11)

i=1
and that {zj} are bounded, section 2 proves that

liminf ¢(z) =0, (1.12)
k—o0

where ¢5 and cg are two positive constants, ||Bi|| is the matrix norm subordinate to the vector norm ||.||,
that is
|1B|| = sup || Bez||/]]]] (1.13)
70

(see Wilkinson (1965)) and v (.) is defined by

Y(z) = h(f(z)) - i h(f(z) + VT f(2)d), Ve R (1.14)

Two conditions are given at the beginning of Section 3. If (1.11) and these two conditions are satisfied,

and if the points {z;} are all in a small neighbourhood of the solution, it is proved in Section 3 that

[|Br||(k = 1,2,...) are uniformly bounded and, not only does {z;} converge to the solution, but also
> ||dg]| is finite.

In Section 4 and Section 5, minimax and L; problems are analyzed. In either case, strict complemen-

tarity and second order sufficiency are assumed. If (1.11) holds and {z;} are in a small neighbourhood

of the solution, it is proved that the conditions of Section 3 are satisfied.

2. Kuhn-Tucker Points

In this section, it is proved that the sequence {z}} generated by our algorithm is bounded away

Kuhn-Tucker points. Here Kuhn-Tucker points are defined to be those at which the equation
() = 0 (2.1)

holds, where v(.) is defined by (1.14).

Since any two norms in R” are equivalent, there exist positive constants ¢; and cg such that

cr|ld]] < [ld]|> < es]|d]] (2.2)



holds for all d € R™.
Let us define

Maz () = h(f(z)) ~ min h(f(@) + V" F()d) (2.3)

for all z € R and all L > 0, than we have the following lemma.

Lemma 2.1 If Mazr(x) and ¢r(d) are defined by (2.3) and (1.6) respectively, than
1. -
h(f(e)) = $n(di) > 5 min{Maza, (wx), g *[Maza, (z0)]* /|| Bl AL} (2.4)
Proof By the definition of dj,, we have

h(f(zr)) — ér(dr) > h(f(zr)) — r(d), V||d|| < Ay. (2.5)

Let ||di|| < Ay satisfy
Mazn, (zi) = h(f(zi) — h(f(z) + VT f(z1)dr) (2.6)

Then, unity the convexity of h(.), we have, for a € [0, 1],

h(f(xr)) — de(dr) > h(f(zr)) — ¢r(ady)

1 -
> aMaza, (zr) — §a2Jindk
1 5 = -
> aMaza,(zx) = 507 |lde]|2|| Bed|l2
L 2 2
> aMaza, (zg) — 508||Bk||Aka (2.7)
The last line of the above inequality is due to (2.2) and ||d|| < A. Therefore

h(f(xr)) = dr(de) > max [aMaza, (zr) - %CﬁIIBkIIAiaz]

0<a<l

Y%

1. _
5 min{Maza, (zx), ¢ *[Maza, ()] /|| Bil | AL}, (2.8)
which ensures(2.4). O
By definition,)(z) = Max;(z) for all z € ", and by the convexity of h(.), we have
Mazp(x) > min{L, 1} (z) (2.9)

for all € R™ and all L > 0.
The following theorem, similar to Powell’s (1975), implies that {z} is not bounded away from Kuhn-

Tucker points.
Theorem 2.2 If (1.11) is satisfied and {z} are bounded, then

liminf ¢ (zg) =0 (2.10)
k—o00



Proof Assume that the theorem is invalid, then there exists 6; > 0, such that

Y(zy) > 6 (2.11)
for all k. From (2.9) and the above inequality,
Maza, (zr) > min{Ag, 1}6; . (2.12)
By lemma 2.1 and (2.12), we have
1 . _ _
h(f(zr)) — dr(de) > 561 min{Ag, 1, c5 261 /||Bi|, cg 61 /|| Bx || A2} (2.13)

Let 3’ denote the sum over the iterations on which (1.8) holds. Then by the fact that h(.) is bounded

below, we have

> 'IA(f (k) — b (di)] (2.14)
k
is convergent. From (2.13) we have
k
> IA/(es e Y Ay) (2.15)
k i=1
is convergent. By the definition of Ay, we have, due to Powell (1975),
k k
S A< (e /0-e)A+3A] (2.16)
i=1 i=1
Therefore
k
C1 C1
zk:'A/[Cs ool = A +eo(l+ 7= 04);'Ai] (2.17)
is also convergent. Hence, we obtain that
> A (2.18)
k
is convergent. Noticing (2.16), we have
o0
> A (2.19)
k=1
is finite. Consequently, ||Bg|| are uniformly bounded, and by (2.13),
1
h(f(zr)) = on(dr) 2 5018k, for k > ki (2:20)
where k; is a constant integer. Since
h(f (xx + di)) — dr(d) = O(||d]|*) (2.21)



we have, from (2.20) and (2.21),

h(f(zk)) — h(f(zk + di))
h(f(zr)) — or(dk)

lim =1>c (2.22)

Thus there exists ks > 0 such that
Ak+1 Z ||dk||, for k Z ]{?2 (223)

Now, by the argument of the proof of lemma 6 of Powell (1983), there exists a positive constant 1 such
that, if ||di|| < Ag, then ||di|| > n. However, the convergence of the sum (2.19) implies that ||d|| — O.
Therefore there exists k3 > 0 such that

Ap = ||dg||, for k > ks. (2.24)
From (2.23) and (2.24), it follows that
Ak—i—l Z Ak for k Z max{k2,k3}. (225)

This contradicts (2.19), which completes our proof. O
The conditions of theorem 2.3 are often satisfied. In fact many algorithms demand (1.11). The

condition that {z;} are bounded is also usually satisfied, in particular when z; is chosen so that

{z|h(f(z)) < h(f(z1))} (2.26)

is a bounded set in R".
Since ¥(z) is continuous (see Powell (1983)), {z;} can not be bounded from Kuhn-Tucker points if

the conditions of theorem 2.2 are satisfied. Further, theorem 2.2 gives the following corollary.

Corollary 2.3 If T is an isolated local minimum of the objective function (1.1) at which ¢(z) = 0,
if ¥(.) # 0 at every other point in the neighbourhood of T, and if xy, is in this neighbourhood for all
sufficiently large k , then x, — T.

Proof It follows directly from theorem 2.2 that the monotonically decreasing sequence {h(f(zx)); k =
1,2,...} converges to h(f(Z)), and it follows from continuity that, for any d > 0 there exists € > 0 such
that, if ||zx — Z|| > & then hA(f(xr)) > h(f(Z)) + €. Therefore the corollary is true. O

3. Convergence Results

In this section, two conditions are given on a Kuhn-Tucker point, and under these conditions it is
proved that, if {z;} are in a small neighbourhood of the Kuhn-Tucker point, then the conditions in

corollary 2.3 hold and Y-, ||dx|| is finite. Hence, assuming (1.11), ||Bg|| is uniformly bounded. The



two conditions are as follows. h(f) is said to satisfy condition(I) at Z if and only if there exist ¢; > 0 and

cg > 0 such that
h(f(x)) = h(f(Z)) > eol|z — Z||? (3.1)

for all ||z — Z|| < e1. h(f) is said to satisfy Condition (II) at Z with respect to ay if and only if there
exists ez > 0 such that

Moaw|jp—z(x) > ao[h(f(z)) — h(f(Z))] (3.2)

for all ||z — Z|| < €2, where Max),_z|(z) is defined by (2.3).
The following lemma shows that Condition(I) implies that Z is a Kuhn-Tucker point, and that the

assertion 1(Z) = 0 in Corollary 2.3 is redundant.
Lemma 3.1 If  is a local minimum of h(f(z)), then T is a Kuhn-Tucker point.
Proof If the lemma is invalid, then there exists dy € R" that
h(f(®) + VT f(Z)do) < h(f(7)). (3.3)

By the convexity of h(.) we have, for o € [0,1]

h(f(@) +aVT f(z)do) < h(f(z)) = alh(f(2)) = h(f(&) + VT f(Z)do)]. (3-4)
Hence for small a > 0,

h(f(& + ado)) < h(f (%)) — a[h(f(z)) = h(f(@) + VT f(Z)do)] + oa), (3.5)

which contradicts the assumption. Hence the lemma is true. O

Our main result that ) ||dk|| is convergent depends on the following two lemmas.

Lemma 3.2 Let {x} be generated by the algorithms stated in Section 1. Assume that h(f) satisfies
Condition (II) at T with respect to some ag € (0,1) and that zy, is in a neighbourhood of T such that (3.2)
holds for sufficiently large k. Then we have

h(f () = dn(dr) > %aoDk min{Ay, ||z — Z||, ao| D/ 5] B[}, (3.6)

where

Dy = [h(f(zx)) = h(f(2))]/llx) — 2] (3.7)

and ¢i(.) is defined by (1.6).
Proof Obviously the lemma is valid if h(f(zr)) < h(f(Z)). So we assume

h(f(xr)) > h(f(Z)) (3-8)



for all k. Define dj, satisfying ||dy|| < ||zx — Z|| and

h(f(zk) + VTf(mk)dk) h(f(zr) + V7 f(2r)d), (3.9)

= min
[ldlI<]|zr—2||

then for all « € [0,1],

h(f(zr) — éx(amin{A/||zy — Z||, 1}dy)

> amin{Ay/llz — 3], () — B(F @) + V7 F (o) de)]
—g0”min{A/|fzg — 7, 1)1°d] Bud
> aaomin{Ay,||zy — Z||} D

1 . _
—§a203[mlnAk,||mk —m||}]2||Bk|| (3.10)

Hence, by the definition of dj, we have

h(f(z)) —  ér(dr)

> max {A(f(0)) — dx(amin{A /o —7ll,1}d0)}
1 . . _
> 3 min{ao min{Ay, ||zx — Z||} Dy, a2D; /c2||Bi||}, (3.11)

which ensures (3.6). O

Lemma 3.3 Assume that all the conditions in the previous lemma are satisfied, that h(f) satisfies Con-

dition(I) at T and that xy, is in a neighbourhood of T such that (3.1) holds for sufficiently large k. If

> min{|ldll, |lzx — 2[[, Di/(1 +[|Bel))} (3.12)
k

is convergent, then
!
D lldell/(L+1IBxll) (3.13)
k

s also convergent.

Proof The theorem is trivial if ||dg|| is the smallest term in the braces of expression (3.12) for all

sufficiently large k. Therefore, if the lemma is invalid, there exist x4, (j = 1,2,...) such that k; € 3" and

[ee]
> min{||zy; — 2|, Dy, /(1 + || By, |I} (3.14)
j=1



is convergent but

Z||dkj||/(1+||Bkj||)

is divergent. Without lose of generality, we assume

i min{||zy; — z|[, Dy, /(1 + || B, [])}
RS [l 11/ (1 + {1 B, 1)

=0
If there are only finitely many j such that the equation
min{]|zy, — 2, Dy, /(1 + By, )} = llos, — 3]

holds, then we have

tim Dy, /llds, | = 0.
Hence, by the definition (3.7) of Dy,

h(f (zr;)) — h(f(®)) = olller; — ll|d; |])-

It follows from (3.1) that
|lzk; — 2l = olllda, [)-

On the other hand, because k; € 3" and because
h(f(zr; + di;)) — h(f(2)) < h(f(2r;) — h(f(2)) = o(llzr; — ][[|dk; []),
we obtain from (3.1) the equation
ek, + di; — 2||* = o(||ze; — 2|l [))-

Since (3.20) gives

lim lzx; + di; — Z||/||di; || = 1,
J—0o0

it follows that
\ldi; I” = o(lxx, — 2|/l da; 1)),

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

which is a contradiction to (3.20). So we assume that there are infinitely many j such that (3.17) holds.

Without loss of generality, we assume (3.17) holds for all j. Hence

Lim |[z; — 2||(1 + || B [1)/Ild; || = 0
j—oo

So again we derive that
lzx = Z|| = ol[d;|)-

(3.25)

(3.26)



By the definition of dj, in (3.9) and by (3.2), we have

h(f(k,) = o, (di;)

> aolh(f(x,) ~ (@) ~ 5k, — 7By

Since
h(f(zk;)) — h(f(Z))
[(h(f(zk;)) — h(f(Z))(R(f(zk; + di;)) — h(f(Z))]

collen; — Z[l|zn; + di; — 2|

=

Y%

Y%

and by (3.25) and (3.26)

llze; — ZIP1Bi, Il = o(lld, |ll|=x, — 1))

= O(llzk; + d; — z[l||zr; — ),

there exists j; > 0 such that

h(f (zx;)) = b, (di;) > %ao[h(f(l“kj)) — h(f(Z))]

for all j > j;. From (3.20) and (3.26), there exists j» such that

h(f (wr;)) = bn; (diy) > %ao[h(f(l“kj)) — h(f(Z))]

for all j > j;. Therefore, from (1.8)

W a,) = (o, + diy) > soocolh(f () - BFE)]
which we rewrite as
Wty + diy) ~ B @) < (1= Sa0en) [ er,) ~ @]

Thus, since (h(f(x))) decreases monotonically,

W7, +di,)) — AF@N]E < (1= Sones) Hh(F (o, +di,)) — A7 @)]

for j > j». Consequently,

o0

SIS (@, + di,) — h(F(2))]

J=j2

N

10

W=

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)



is convergent. It follows from (3.1) that

> lak; + di, — 2] (3.36)
Jj=j2
is convergent. Noticing (3.26), we have
> ld, I (3.37)
Jj=j2

is convergent. This contradicts (3.15), which demonstrates that our lemma is valid. O

Theorem 3.1 If all the condition in lemma 3.3 are satisfied and if Bi(k = 1,2,...) satisfies (1.11), then

> e || (3.38)
k=1

1§ convergent.

Proof Since h(f) is bounded below, we have

> IAF (@) = h(f (@ + di))/ [ f(24)) = B(F ()] (3.39)
is convergent (Powell, 1975). By (1.8), (3.6) and (3.7) we have that
Z’%fmin{Ak, [l = ||, a0 D /3] [Bil }[A(F (24)) = B(F(2))]% ||k — 2] (3.40)
is convergent, so (3.1) implies that
> 'min{Ay, [z — ||, a0 Di/c3]|Bel} (3.41)

is convergent. Therefore, since ap and cg are constants, we deduce that (3.12) is convergent. Hence, by

lemma 3.3, (3.13) is convergent. Since By (k = 1,2,...) satisfies (1.11),

k
S/ L+ ST A (3.42)
k i=1

is convergent. Because A; < ¢1]|d;i—1]|, it follows that

;
> ldill/ L+ Nl (3.43)
k i=1

is also convergent. By using an argument that is similar to the derivation of (2.16), we have
k
D dell/ (LD il (3.44)
k i=1

11



is convergent. Hence by the arguments of Powell (1975), we have

> e ]| (3.45)
k=1

is convergent. O
Because inequality (3.1) and lemma 3.1 imply that the conditions of corollary 2.3 hold, we have the

following result.

Corollary 3.4 Under the conditions of Theorem 3.4, ||B||(k = 1,2,...) are uniformly bounded and {z\}

converges to x*.

Proof This follows directly from theorem 3.4, corollary 2.3 and A; < ¢1]|d;j—1]|| for i > 1. O

4. Minimax Problem

In this section and the next one, we consider minimax and L; problems respectively. In each case it
is proved that the two conditions given at the beginning of Section 3 are satisfied under strict comple-
mentarity and second order sufficiency. Hence convergence results follow directly.

Throughout this section, we consider the case when

h(f()) = |1f(@)]|oo- (4.1)

When analyzing the minimax problem, strict complementarity and second order sufficiency conditions
are often needed, for example, see Han (1978) and Powell (1983). We also assume these conditions and
that f;(z)(i = 1,2,...,m) are all twice continuously differentiable, that z* is the solution of (1.1), and

(without loss of generality) that
filz™) = 1[f(@")]|sc > 0. (4.2)

Therefore there exist unique positive Lagrange multipliers A} (i = 1,2,...,m) such that

S N Vfi(a*) =0 (4.3)
i=1
S A =1 (4.4
i=1
and, if d is any nonzero vector such that
(Vf(@)")Td=0 (4.5)
then
d"Wed > 0 (4.6)

12



where
Vi) = (Vi(z") ... Vn(z*))

and

Goo = iA;VZ’fi(x*).

i=1

(4.7)

(4.8)

Throughout this section, we assume that all these conditions hold. First we have the following lemma

Lemma 4.1 The inequality
(o*\\T <
lrsniaggn(vfz(w ) d<0

is equivalent to

(Vf(@))Td=0.
Proof Obviously (4.10) implies (4.9). Assume (4.9) holds. If (4.10) fails, then

. (e* W\ T
lglsnm(sz(a: ) d<O0.

Hence, since A} >0 for i =1,2,...,m,
m T m
0= (Z A:Vfi(m*)> d=Y " N(Vfi(z*)"d < 0.
i=1 i=1
This is a contradiction. Thus (4.10) holds. O
Lemma 4.2 h(f) satisfies Condition (I) at z*.
Proof If the lemma is invalid, then there exists 2, (k = 1,2, ...) such that
Tp — ¥
and

lim [h(f(&r)) = B(f(2)I/ |2k — 2™]* = 0.

k—o0

Without loss of generality, we assume

lim (& — z*)/||&r — «*|| = do-
k—oo

It is elementary that

lim [(f(2x)) = A(f (@)]/ e — %> = max (Vfi(2")) do.

k—o0 1<i<m

By lemma 4.1, (4.16), we have
(V)" do = 0.

13

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)



Since the following inequality

h(f(z)) - Z Ailfi(z) = fi(z")]

= Z Nl =)V fi(a*) + %(w = 2"V fi(a")(x — 2")] + o(l|lz — =)

%(ﬂf — 1) Goo(z — %) + ol — 27|”)

holds when z close to z*, we have, by (4.14) and (4.15),

d¥Gudy < 0.
This is a contradiction to second order sufficiency because of (4.17). Hence the lemma is valid.
Lemma 4.3 h(f) satisfies Condition (II) at * with respect to any ag € (0,1).

Proof If the lemma is invalid, then there exist a; € (0,1) and & (k = 1,2,...) such that

T — z*
and
Maz)|z, —o||(Zk) < ar[h(f(Zk)) — h(f(z"))].
Without loss of generality, we assume ||.|| is the 2-norm and
lim (2 —*)/||&) — =*|| = d.
k—o00
Since

Maz)j,—p-i(z) > [b(f(2)) = h(f(2"))] + O(|z — 2|,
it follows from (4.21) that
[h(f(@x)) = (£ (@)] = O(ll&x — z*[]*).
Thus

lim sup[f;(Zx) — fi(z*)]/||# — z*|]> < +00

k— o0

for all i = 1,2, ...,m. Noticing
* 1 * * *
ZA fi@) = fi@/le =a™|P = (@ =) Gl —a")/|lz = "]

- 0()

14

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)



and that Af > 0 for all 4, using (4.25), we have
lim inf[fi(3) — (e )}/l — 2°]” > —o0 (4.27)
for all i = 1,2,...,m. So, by replacing {Z} by a subsequence if necessary, we assume

[fi(@e) = fi(a")]/ |1z — 2*[] = as (4.28)

lim
k—o00

exist for all i = 1,2, ...,m. Since

fi@) = fila®) = (VFia) (@ =) + 5z =)V fla ) —a?) bollla o), (4.29)
we have
Tim (Vfi(e)7 (@~ %) lle — 2" |P = s — ZdL V2 i(a" ) (4.30)
Consequently,
(VI ) (@ —a*) = Ol — 2°|P). (4.31)

Noticing that

fi(@) - Fie") = (V)T 4 (V@) T2 4ol — 1), (4.32)
we have
Maz)|z,, -+ (Zr) = h(f(Z)) - Hdllgrﬁla%?fz*llh(f(jk) +(Vf(@r)"d)
= Tr)) — min T z* Ik — 2"
= W@ - min | () + (V)T
TS+ T + o — I
= Tr)) — min " " T T
= W@ - min B+ (V)T

—(V£(@r))"d) + o(l|ix — 2*|1%)

= ) — min x* 1 N (3 — z*
= (@) - min G+ (V@) @ - a)
—(Vf(@K)"d) + o(||Ex — z*|?). (4.33)
Let uy be the vector defined by
up = (V@) (Vf @) (@ — %), (4.34)

where ((Vf(z*))T)7T is the Moore-Penrose generalized inverse of (V f(z*))7 (see Stewart (1973)). Equa-
tion (4.31) and (4.34) imply
|lur|l = O(l|z — «*[*) (4.35)

15



and
(Vi) up = (V@) (@ — *), (4.36)

hence we have
(Vf(@) ur — (Vf (@) (@ — 2%) = o] |, — z*|?). (4.37)

Therefore, because (4.35) allows d = uy, in (4.33) for large k, it follows that
Maz)jz, =) > h(f(Zx)) = h(f(2")) + ||k — 2 |). (4.38)
Hence (4.21) contradicts lemma 4.2, which verifies our lemma. 0O

Theorem 4.4 If f satisfies all the conditions stated in the beginning of the section, and if Bx(k =1,2,...)
satisfies (1.11), then there exists a neighbourhood of x* such that if {z} are calculated by the methods

stated in section 1, and if xy, is in the neighbourhood of x* for sufficiently large k, then
[ee]
> ke — ]| (4.39)
k=1

is convergence. Also {xy} converges to x*, and ||Byg|| is bounded uniformly.

Proof This follows directly from Lemmas 4.2 and 4.3, Theorem 3.4 and Corollary 3.5. O

5. L; Problem
In this section, we consider the case when
h(f(z)) = IIf (@)l (5.1)

We assume that f;(z)(i = 1,2,...,m) are all twice continuously differentiable, that z* is the solution of

(1.1) and that
filz*)y=0 iel c{l,..m}
filx®) #0 ie{l,...,m}\I. (5.2)

As in the minimax problem, we assume the strict complementarity and second order sufficiency conditions.

Therefore, there exist unique Lagrange multipliers {u};i = 1,...,m} such that

ui = sign(fi(z")), 1€ h

> uiVi(zt) =0 (5.3)
i=1
and
-l<u;<l, i€l (5.4)
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and, if d is any nonzero vector such that

(Vi) Td=0 Viel, (5.5)
then
d'Gyd >0 (5.6)
where
Gy = iu;Wﬁ(x*). (5.7)
i=1

Throughout this section, we assume that all these conditions hold. For convenience of notation, without

loss of generality, we assume that

fi(z") >0 Vigl. (5.8)
Lemma 5.1 h(f(x)) satisfies Condition (I) at x*.

Proof If the lemma is invalid, then there exists Z;(k = 1,2, ...) such that

Ty — z” (5.9)
Tim [A(f(@)) — h(F @)/ 17x — 27 = 0 (5.10)
and
lim (z), — z*)/||z, — =*|| = dp- (5.11)
k—o00
By (5.8) and (5.10), we have
YNV file )Ty + D (Vfila*) dy =0, (5.12)
i€l ¢
and by (5.3) we have
> ui(Vi(a®) dy =0, (5.13)
i=1
which gives the equation
Y IV fila) " dyl[t = sign((V fi(z*))" dy)us] = 0. (5.14)
ieh
Thus, since |uf| < 1 for all 7 € I;, we have
(Vfilz*)Td, =0 Viel. (5.15)
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Now the inequality

h(f(z)) = h(f(z7)) = iu;‘[fi(m) = fi(z")]
i=1
1 o\ T * (12
= =) Gz — o) +ollle — o)
holds when z close to z*. Therefore (5.10) and (5.11) imply
(dg)"G1rdp <0
which, because of (5.15), contradicts (5.6). Hence the lemma is valid. 0O
Lemma 5.2 h(f(z)) satisfies Condition (II) at x* with respect to any ag € (0,1).

Proof If the lemma is invalid, then there exist a» € (0,1) and z}, (k = 1,2,...) such that

z), — x*
and
Mag)|z; o\ (z},) < a2[h(f(})) — h(f(z"))]-
Without loss of generality, we assume ||.|| is the 2-norm and

lim (}, — *)/|lo}, — 2" = ds.
k—o0

As in (4.24), we have
h(f(x})) = h(f(z™)) = O(||z}, — ™),
and as in (5.15) we have
(Vfi(z*)Tdi =0 Viel,
which implies

> (Vi) Tdy = 0.

il

By our assumptions, there exist k4 such that, for k > k4,
W(f(zh) — h(f) =Y [filz}) = filz")]

+ Y i)l

el
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Moreover, some u} = 1 for i ¢ I, (5.3) implies

im[) - (fi(el) = file™) + D i file™))/ |l — 2" |

iZI i€l

1 -
= 5ci{Gldl. (5.25)

Equations (5.21), (5.24) and (5.25) and strict complementarity imply the conditions

fi(zh) = O(|lzf, —a*|]*) Vi€ I, (5.26)
and
;(fi(wk) — fi(z")) = Ol — ™I (5.27)
Define
¢(z) =Y fil). (5.28)
igh

As in the proof of lemma 4.3, we have

(Vfi(a*) (a}, — 2*) = O(||z}, —«*|]*) Vie @, (5.29)
and
(Vo) (} — 2*) = O(|lz, — 2*[]*). (5.30)
Hence there exists uj, € R satisfying
ul, = O(|Je — | (5.31)
and
(VF@) (@), — %) = (V") uj, (5.32)

where f(z) is a map from R” to RI"*1+1 whose components are f;(z) (i € I,) and ¢(x). Therefore as in
(4.38), we have

Maz|jp; —o(2}) > h(F(2}) = h(f(z")) + o[|z}, — =*|?). (5.33)
Since h(f(x},)) = h(f(x})) for large k, it follows from (5.19) that
h(f (@) = h(f (")) = o(|lz}, — 2™ |), (5.34)
which contradicts lemma 5.1. Hence the lemma is true. O

Theorem 5.3 If f(z) satisfies all the conditions stated in the beginning of the section, if By (k=1,2,...)
satisfy (1.11), then there exists a neighbourhood of x* such that, if {x1} are calculated by the methods
stated in Section 1, and if xy is in this neighbourhood of * for sufficiently large k, then

> ek — ]| (5.35)
k=1
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is convergent. Also, {x} converges to «*, and ||B|| (k =1,2,...) are uniformly bounded

Proof This follows directly from Lemmas 5.1 and 5.2, Theorem 3.4 and Corollary 3.5. O

6. Discussion

Since minimizing a smooth function f(z) from R™ to R is the same as minimizing ||F(z) + ¢|| for some
constant ¢ if F'(x) is bounded below, our results are applicable to the smooth case. Indeed it is elementary
that (3.1) and (3.2) hold in this case if VF(z) = 0 and V2F(z) is positive definite, where h(.) = ||.||
and f(.) = F(.) + ¢. Hence our results are a generalization of Powell’s results (1975). Specific updating
schemes for the matrices By, are available such that (1.11) holds (see, Powell, 1975, for example), and a
fast rate of convergence is expected. However, it follows that a general superlinear convergence result can
not be proved for nonsmooth h(.) without additional conditions. An extension of our work to questions

of superlinear convergence will be the subject of another paper.
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