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In this paper we analyze the conjugate gradient method when the objective function is quadratic.
We apply backward analyses to study the quadratic termination of the conjugate gradient method.
Forward analyses are used to derive some properties of the conjugate gradient method, including
the only linear convergence of the method and an upper bound for the rate of convergence.
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1 INTRODUCTION

Conjugate gradient method is one of the basic numerical methods for the uncon-
strained optimization problem:

min
x∈Rn

f(x), (1)

where f(x) is a nonlinear function defined in Rn. Conjugate gradient algorithms
are iterative. The initial point x1 is given and the first search direction d1 is chosen
by

d1 = −g1 = −g(x1) = −∇f(x1). (2)

We use the notations gk = g(xk) = ∇f(xk). At the k-th iteration, given the current
iterate xk and the search direction dk, a step-length αk is calculated by the exact
line search:

αk = arg min{f(xk + αdk); α > 0} (3)

and the next iterate is set to

xk+1 = xk + αkdk.

The search direction for the next iteration is defined by

dk+1 = −gk+1 + βkdk

such that dk+1 is “conjugate to” dk in the sense that

dT
k+1Adk = 0 (4)
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if the objective function is a convex quadratic function

f(x) =
1
2
xT Ax + bT x + c (5)

where A is an n×n positive definite matrix. The exact line search (3) implies that

gT
k+1dk = 0. (6)

More details about the conjugate gradient method can be found in [1], [3] and [8].
Assume that f(x) is (5), in order to force (4), it follows that

βk =
gT

k+1Adk

dT
k Adk

. (7)

Because f(x) is convex quadratic, it can be shown that (7) is the same as

βk =
‖gk+1‖22
‖gk‖22

(8)

or

βk =
gT

k+1(gk+1 − gk)
‖gk‖22

, (9)

if the first search direction d1 is chosen by (2). (8) and (9) give the Fletcher-Reeves
method [4] and the Polak-Rabiére-Polyak method [5], [6] respectively.

One nice property of the conjugate gradient method is that it terminates after
at most n iterations if f(x) is a convex quadratic function and if the first search
direction is chosen by (2). However, for a general nonlinear function f(x), the
objective function f(x) can be closely approximated by a quadratic function only
after certain number of iterations. Thus local analysis can not apply to show
quadratic termination because it is usual that dk 6= −gk for k > 1, due to early
iterations. Hence it is important to study the performance of the conjugate gradient
method when the condition (2) is violated. Instead, we only assume that dT

1 g1 < 0.
It was first shown by Powell [7] that the conjugate gradient method normally does

not terminate after finite many iterations if the condition (2) is removed, though
the objective function f(x) is quadratic and strictly convex. Powell [7] also pointed
out if termination happens it must be within the first n+1 iterations. We re-prove
this result by using backward analyses. It is known that, the conjugate gradient
method may converge similar to that of the steepest descent direction method if
condition (2) is not satisfied (see, [2]). We give a theoretical study, and show that
the conjugate gradient method applied to convex quadratical functions converges
always only linearly if finite termination does not happen. An upper bound for the
linear rate of convergence is also given.

As presented in [7], throughout the rest of this paper, we assume that the objec-
tive function is the simple convex quadratic function:

f(x) =
1
2
xT Ax
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where A is an n× n symmetric positive definite matrix.
In the next section, we introduce backward analyses to derive some results on

quadratic termination, including the main results in [7]. In section 3, we use forward
analyses to show that the rate of conjugate gradient method is only linear if it does
not terminate within the first n + 1 iterations.

2 BACKWARD ANALYSIS

In this section, we analyze the conjugate gradient method by backward analyses.
Under the assumption that termination happens at the N -th iteration, we prove
that N must not be greater than n + 1.

First we recall the following relations:

xk+1 = xk + αkdk

dk+1 = −gk+1 + βkdk (10)

and

αk =
−gT

k dk

dT
k Adk

, βk =
gT

k+1Adk

dT
k Adk

(11)

which imply that
gk+1 = gk + αkAdk (12)

dT
k+1gk+1 = −‖gk+1‖22

for all k.
The following Lemmas 2.1-2.3 are straightforward:
Lemma 2.1. For all k ≥ 2, we have

dT
k A(dk + gk) = 0 (13)

gT
k (dk + gk) = 0. (14)

Proof. The lemma is obvious if dk + gk = 0. Assume that dk + gk 6= 0, it can be
seen that βk−1 6= 0. Therefore we have that

dk−1 =
1

βk−1
(dk + gk).

Now equation (13) follows from the conjugate condition dT
k−1Adk = 0 and (14) from

the exact line search condition (6).
Lemma 2.2. If equation

dk + gk = 0 (15)

is true, then either gk = dk = 0 or k ≤ 2.
Proof. Due to equation (15) and the conjugate condition (4) we have that

dT
k−1Agk = −dT

k−1Adk = 0. (16)
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Now relations (16) and (12) imply that

dT
k−1Agk−1 − gT

k−1dk−1
‖Adk−1‖22
dT

k−1Adk−1
= 0. (17)

Assume that k > 2, Lemma 2.1 and the fact that k − 1 ≥ 2 show that

gT
k−1dk−1 = −‖gk−1‖22 (18)

dT
k−1Adk−1 = −dT

k−1Agk−1. (19)

Substituting (18) and (19) into equation (17), we find that

(dT
k−1Agk−1)2 = ‖gk−1‖22‖Adk−1‖22

which proves that the vectors gk−1 and Adk−1 are collinear. Consequently gk = 0.

Lemma 2.3. The relation gT
k+1gk = 0 holds for all k ≥ 2 .

Proof. By the conjugate condition (4) and the exact line search condition (6)
we have that dT

k−1gk+1 = dT
k−1gk + αkdT

k−1Adk = 0. Now by (10) the relation
gT

k+1gk = gT
k+1(−dk + βk−1dk−1) = 0 holds for all k ≥ 2.

For the rest of this section, we assume that the conjugate gradient method ter-
minates after N iterations, that is

gN+1 = 0. (20)

Termination condition (20) indicates that the vectors gN and AdN are collinear.
Thus there exists a number ρ such that dN = −ρA−1gN .

Under condition (20), we have the following results:
Lemma 2.4. If

dk + gk 6= 0 (21)

for k = N, N − 1, ..., N − l + 1, then

dT
i Adj = 0 (22)

gT
i gj = 0 (23)

for N − l ≤ i < j ≤ N .
Proof. The lemma is obviously true if l = 1. Now we assume that it is true for

l = l0 and prove the lemma for l = l0 + 1. It is easily seen that we only need to
prove equations (22) and (23) for i = N − l0 − 1 and i < j ≤ N .

dT
N−l0−1Adj =

1
βN−l0−1

(dN−l0 + gN−l0)
T Adj =

1
βN−l0−1

gT
N−l0Adj

=

{− ρ
βN−l0−1

gT
N−l0

gN , if j = N
1

αjβN−l0−1
gT

N−l0
(gj+1 − gj), if j < N

= 0
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and

gT
N−l0−1gj = (gN−l0 − αN−l0−1AdN−l0−1)T gj

= −αN−l0−1d
T
N−l0−1Agj

= −αN−l0−1d
T
N−l0−1A(dj − βj−1dj−1) = 0

Therefore the lemma follows by induction.
Lemma 2.5. Assume the conjugate gradient method terminates after N itera-

tions, then N ≤ n + 1.
Proof. Suppose that N > n+1, Lemma 2.2 implies that (21) holds for l = N −2.

Thus we have that
gT

i gj = 0 (24)

for 2 ≤ i < j ≤ N . On the other hand, our assumption implies that gi(i =
2, 3, ..., N) are all non-zero vectors. Now (24) is impossible because there do not
exist N − 1(> n) non-zero mutual conjugate orthogonal vectors in Rn. This con-
tradiction shows that N ≤ n + 1.

Let d̃k and g̃k be defined as follows:

d̃N = ρdN , d̃k = ρ

N−1∏

i=k

βidk (25)

g̃N = gN , g̃k = ρα−1
k

N−1∏

i=k

βigk (26)

for k < N . From (10), (12) and (25)-(26), we have that

d̃k−1 = d̃k + ρ−1αkg̃k (27)

g̃k−1 = αkα−1
k−1β

−1
k g̃k −Ad̃k−1. (28)

Set d̄k = A1/2d̃k, ḡk = A−1/2g̃k, β̄k = ρ−1αk, ᾱk = αkα−1
k−1β

−1
k . It follows from the

relations (27)-(28) that
d̄k−1 = d̄k + β̄kAḡk (29)

ḡk−1 = −d̄k−1 + ᾱkḡk, (30)

for k ≤ N . Notice that
ḡN = −d̄N . (31)

Now we can easily see that (29)-(31) are exactly conjugate gradient iterations except
they are backward, as the “conjugate condition” ḡT

k−1Aḡk = 0 and the “exact line
search condition” d̄T

k−1ḡk = 0 are satisfied. Hence we can trace the iterations
backward provided that (15) does not hold.

Assume that N > n + 1, the backward iterations (29)-(31) and the standard
analysis of the conjugate gradient method imply that ḡN−n = 0, which yields
dN+1−n + gN+1−n = 0, but it contradicts Lemma 2.2 because N + 1− n > 2. This
contradiction verifies the validity of Lemma 2.5.
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3 FORWARD ANALYSIS

It is known that termination happens if d1 + g1 = 0 or d2 + g2 = 0 (for example,
see [3]). Without loss of generality, due to Lemma 2.2, we assume that,

dk + gk 6= 0 (32)

for all k.
First we have the following results:
Lemma 3.1. For k > 1, we have

Adk = − 1
αk

[dk+1 − (1 + βk)dk + βk−1dk−1] (33)

where αk and βk are defined by (11).
Proof. Equations (12) and (10) can be rewritten as

Adk =
1
αk

(gk+1 − gk) (34)

gk+1 = −dk+1 + βkdk. (35)

Since k > 1, we can replace k by k − 1 in equation (35), which gives that

gk = −dk + βk−1dk−1. (36)

Now (33) follows from (34), (35) and (36).
Lemma 3.2. For any integer l ≥ 1, if dk, dk+1, ..., dk+l are mutual conjugate,

then
dT

j gi = 0 , k ≤ j < i ≤ k + l + 1. (37)

Proof. From (12), (6) and the assumption of the lemma, it follows that

dT
j gi = dT

j [gj+1 +
i−1∑

t=j+1

αtAdt] = 0

which verifies (37).
Lemma 3.3. If dk, dk+1, ..., dk+l are mutual conjugate, then the vectors dk+1,

dk+2, ..., dk+l+1 are also mutual conjugate.
Proof. It is sufficient to prove that

dT
k+l+1Adj = 0 (38)

for j = k + 1, ..., k + l. As (38) is obvious if j = k + l, we only need to show (38)
for k < j < k + l. Applying (10), (33) and (37), we can show that

dT
k+l+1Adj = (−gk+l+1 + βk+ldk+l)T Adj = −gT

k+l+1Adj

=
1
αj

gT
k+l+1(dj+1 − (1 + βj)dj + βj−1dj−1) = 0,



CONJUGATE GRADIENT METHOD 7

which gives relation (38) and consequently the lemma is true.
Let L be the largest non-negative integer such that {d1, d2, ...,dL+1} are non-zero

mutual conjugate. ¿From Lemma 3.3, it is clear that either

dL+2 = 0 (39)

or
dT

L+2Ad1 6= 0. (40)

Since (39) implies gL+2 = 0 which indicates that termination happens at the (L+1)-
th iteration, we only consider the case that (40) holds. (40) and (4) imply that
L ≥ 1. It is easy to show the following lemma.

Lemma 3.4. If d1, ..., dL+1 are mutual conjugate and (40) holds, then we have
that

dT
L+3Ad2 6= 0 (41)

Proof. Due to Lemma 3.1 and Lemma 3.2, it follows that

dT
L+3Ad2 = (−gL+3 + βL+2dL+2)T Ad2

= −gT
L+3Ad2

=
1
α2

gT
L+3(d3 − (1 + β2)d2 + β1d1)

=
β1

α2
gT

L+3d1

=
β1

α2
(gL+2 + αL+2AdL+2)T d1

=
β1

α2
αL+2d

T
L+2Ad1 6= 0, (42)

where the last part of (42) follows from (41) and that (32) implies β1 6= 0.
Consequently, we have the following corollary:
Corollary 3.5. Under the assumptions of Lemma 3.4, dk, dk+1, ..., dk+L are

mutual conjugate, but dT
k+L+1Adk 6= 0 for all k.

The following lemma indicates that the ratio ‖dk‖2/‖gk‖2 is bounded below and
above uniformly for all k.

Lemma 3.6. For all k > 1, the following inequalities hold:

1 ≤ ‖dk‖2/‖gk‖2 ≤
√

k2(A), (43)

where k2(A) = λ1(A)/λn(A). λ1(A) and λn(A) are the largest and the smallest
eigenvalues of A.

Proof. The first part of (43) is trivial due to (10) and (6). It follows from (13)
that (dT

k Adk)2 = (dT
k Agk)2 ≤ ||Adk||22||gk||22, which yields

‖dk‖22
‖gk‖22

≤ ‖dk‖22
‖gk‖22

‖gk‖22‖Adk‖22
(dT

k Adk)2
=
‖dk‖22‖Adk‖22

(dT
k Adk)2

≤ k2(A). (44)
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Now, (44) gives the second part of (43).
Lemma 3.7. For all k > 1, we have that

1
k2(A)λ1(A)

≤ αk ≤ 1
λn(A)

.

Proof. It follows from (11), (13) and (43) that

αk =
−gT

k dk

dT
k Adk

=
‖gk‖22
dT

k Adk
≤ ‖dk‖22

dT
k Adk

≤ 1
λn(A)

and that

αk =
‖gk‖22
dT

k Adk
≥ ‖dk‖22

k2(A)dT
k Adk

≥ 1
k2(A)λ1(A)

.

It is known that the conjugate gradient method converges at least linearly, as
at each iteration it improves the objective function value as good as the steepest
descent method. That is, we can show the following inequality

f(xk+1)− f(x∗)
f(xk)− f(x∗)

=
gT

k+1A
−1gk+1

gT
k A−1gk

= 1− (gT
k dk)2

dT
k AdkgT

k A−1gk
≤ 1− 1

k2(A)
,

where x∗ = 0 ∈ Rn is the solution of (1).
However, if the conjugate gradient method does not terminate within the first

n + 1 iterations, its convergence rate is only linear. We shall give an upper bound
for the rate of convergence of the method. The following two lemmas are needed
to obtain the upper bound.

Lemma 3.8. Under the conditions of Lemma 3.4, we have that gT
L+3d1 6= 0 and

that the recurrence relation

gT
L+k+3dk+1 =

αL+k+2

αk+1
βkgT

L+k+2dk (45)

holds for all k.
Proof. From (42), it is easy to see that gT

L+3d1 6= 0. Similar to (42), we can show
that

gT
L+k+3dk+1 = αL+k+2d

T
L+k+2Adk+1 = αL+k+2

βk

αk+1
gT

L+k+2dk,

which gives (45).
Lemma 3.9. Without the condition (2), the definitions (7), (8) and (9) are

equivalent for all k > 1.
Proof. Assume k > 1, it follows from (33), (10) and (18) that

gT
k+1Adk

dT
k Adk

= −gT
k+1[dk+1 − (1 + βk)dk + βk−1dk−1]

αkdT
k Adk

=
‖gk+1‖22
‖gk‖22

, (46)

which shows that (7) and (8) are equivalent. Consequently the lemma follows from
(46) and Lemma 2.3.
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Now we can prove the following result on the only linear convergence of the
conjugate gradient method, which also provides an upper bound for the rate of
convergence.

Theorem 3.10. Assume (40) holds, then the conjugate gradient method con-
verges only linearly. Furthermore, the following inequality

‖gk+L+2‖2 ≥
|β1g

T
L+3d1|

‖g2‖22[k2(A)]2L+2.5
‖gk‖2 (47)

holds for all k.
Proof. From Lemmas 3.7 and 3.8, we can derive that

|gT
k+L+2dk| = |dT

1 gL+3|
k−1∏

i=1

αL+i+2|βi|
αi+1

= |dT
1 gL+3β1| ‖gk‖22

‖g2‖22

L+1∏

i=1

αk+i

αi+1

≥ |dT
1 gL+3β1| ‖gk‖22

‖g2‖22

[
1

k2(A)

]2(L+1)

. (48)

On the other hand,

|gT
k+L+2dk| ≤ ‖gk+L+2‖2‖dk‖2 ≤ ‖gk+L+2‖2‖gk‖2

√
k2(A). (49)

Now inequality (47) follows from (48) and (49). As gT
L+3d1 6= 0, and d2 6= g2 implies

that β1 6= 0, it follows from (47) that the conjugate gradient method converges only
linearly.

Inequality (47) shows that the conjugate gradient method converges always only
linearly if finite termination does not happen. It should be mentioned that (47) is
only an upper bound for the convergence, which does not implies that the conjugate
gradient method converges always with the rate of this upper bound. It is also
possible that this upper bound can be reduced. This seems reasonable, because
some examples are known where, the convergence of the conjugate gradient method
is indeed the same as in the steepest descent method (see, [2]).
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