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Abstract

In this paper, the generalized complementarity problem is formulated as an uncon-
strained optimization problem. Our results generalize the results of [9]. The dimen-
sionality of the unconstrained problem is the same as that of the original problem. If
the mapping of generalized complementarity problem is differentiable, the objective
function of the unconstrained problem is also differentiable. All the solutions of the
original problem are global minimizers of the optimization problem. A generalized
strict complementarity condition is given. Under certain assumptions, local proper-
ties of the correspondent unconstrained optimization problem are studied. Limited
numerical tests are also reported.

Keywords: Generalized complementarity problem , unconstrained optimization, strict
complementarity condition.

1. Introduction

The complementarity problem, a special case of variational inequality problem, has many
applications in different fields such as mathematical programming, game theory, economics.
Generally, the standard complementarity problem has the following form:

y = F (x), x ≥ 0, y ≥ 0, 〈y, x〉 = 0, (1.1)

where 〈·, ·〉 denotes the inner products. When F (x) is an affine function of x, it reduces
to the linear complementarity problem which is denoted by LCP. Otherwise we call it
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the nonlinear complementarity problem or simply NCP. The complementarity problem has
attracted many researchers since its appearance and many results have been given, a nice
survey is given by [3]. The LCP problem, can be converted as a special linear programming
or quadratic programming in the nonnegative orthant of Rn, thus many classical methods for
linear programming are used to solve the LCP problem [10]. For the NCP problem, people
often use so called NCP functions and formulate the NCP as a system of equations or
unconstrained optimization problem, then classical methods for unconstrained optimization
can be applied [4],[7],[8],[11].

The generalized complementarity problem, denoted by GCP (X, F ), is to find a vector
x∗ ∈ X such that:

F (x∗) ∈ X∗, and 〈F (x∗), x∗〉 = 0, (1.2)

where X is a convex cone in Rn, X∗ = −X0, and X0 is the polar cone of X (see [12] )

X0 = {y ∈ Rn : 〈y, x〉 ≤ 0, ∀ x ∈ X}. (1.3)

It is obvious that when X is the nonnegative orthant of Rn, (1.2) reduces to the NCP.
Although (1.2) was proposed and studied twenty-years ago [5],[6], little attention has paid
to it. Traditionally it was considered as a variational inequality problem defined below:

x∗ ∈ X, and 〈F (x∗), y − x∗〉 ≥ 0, ∀ y ∈ X, (1.4)

which usually denoted by V I(X, F ). Then we use the same methods for VI problem to solve
it. In doing so , through variational principle, a merit or gap function is applied, then we
approach the solution of the GCP by minimizing the merit function .

Recently, some new interesting results for these problems are reported. In [2], through
projection operators, the problem (1.4) is reconsidered as differentiable optimization prob-
lem. The objective function has some desirable global properties. In [9], for the NCP (1.1),
the authors proposed unconstrained methods which mainly derived from an augmented La-
grangian formulation. Under certain conditions, the unconstrained problem has excellent
local properties.

The main purpose of this paper is to generalize the results of [9] to the case where X
is a convex cone. In the following section, we first describe some notations and concepts
which will be used in the paper, similar to [9], we first consider a generalized augmented
Lagrangian formulation. Then we show that this formulation equals to the difference of two
functions defined in [2]. In section 3, some global properties of the optimization problem are
discussed. A generalized strict complementarity condition is also considered. Under certain
assumptions, we discuss the local properties of the optimization problem. Some numerical
results are reported in the last section.

2. Preliminaries

First, we give some basic definitions [5], [6]:
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Definition 2.1 Let Ω be a nonempty subset of Rn; then
(i): Ω is a cone if x ∈ Ω ⇒ λx ∈ Ω for all reals λ ≥ 0;
(ii): Ω is a convex cone if x ∈ Ω, y ∈ Ω ⇒ λx + µy ∈ Ω for all reals λ ≥ 0, µ ≥ 0;
(iii): Ω is solid if it has nonempty interior relative to Rn.

In the rest of this paper, except for special description, we assume that the constraint set
X is a closed solid convex cone, which means that problems (1.4) and (1.2) are equivalent.

Similar to [5], [6], we define a partial ordering on Rn as follows: x
X

≥ y if and only if x−y ∈ X

and x
X
> y if and only if x − y ∈ int(X). Now we can reformulate (1.2) as the following

constrained minimization problem:

min
x

{〈F (x), x〉|x
X

≥ 0, F (x)
X∗

≥ 0}. (2.1)

Obviously, the solution of GCP (1.2) is a global minimizer of (2.1). On the other hand, if x∗

is a solution of (2.1) and 〈x∗, F (x∗)〉 = 0 and , then x∗ also solves (1.2). For any nonsingular
matrix C, we define

XC = {y|y = Cx, x ∈ X}. (2.2)

The above definition gives

(XC)∗ = {y|y = C−T x, x ∈ X∗}. (2.3)

Furthermore, if X is closed solid convex cone, so are XC and (XC)∗ [12]. It is easy to see
that (2.1) is equivalent to the following problem

min
x

{〈F (x), x〉|Cx
XC≥ 0, C−T F (x)

(XC)∗

≥ 0}. (2.4)

For any symmetric positive definite matrix G, let ||x||G = 〈x, Gx〉 1

2 . For any closed convex
set Ω, let PΩ(x) be the projection of x onto Ω, and define PΩ,G(x) as the unique solution of
the problem

min
y∈Ω

||y − x||G. (2.5)

Then it follows from the definition of XC that

PXC
(Cx) = CPX,G(x), (2.6)

where G = CT C. Motivated by the results in [9], we consider a generalized augmented
Lagrangian formulation for (2.4)

L(x, u, v, α) = 〈F (x), x〉 + 1
2α

(||PXC
(u − αC−T F (x))||2 − ||u||2

+||P(XC)∗(v − αCx)||2 − ||v||2). (2.7)

Replace u by Cx and v by C−T F (x), we get the following implicit Lagrangian function:

M(x, α) = 〈F (x), x〉 + 1
2α

(||PXC
(Cx − αC−T F (x))||2 − ||x||2G

+||P(XC)∗(C
−T F (x) − αCx)||2 − ||F (x)||2

G−1)

= 〈F (x), x〉 + 1
2α

(||PX,G(x − αG−1F (x))||2G − ||x||2G
+||PX∗,G−1(F (x) − αGx)||2

G−1 − ||F (x)||2
G−1). (2.8)
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Mangasarian and Solodov [9] have studied this interesting function when X is the nonneg-
ative orthant and C = In. In this case, the dual polar of X equals to itself. However, when
X is a general closed solid convex cone, this function demands the calculation of projections
on two sets (XC and (XC)∗). This suggests that a direct application of (2.8) is difficult and
urges us to consider it only in the constrained set XC .

In what follows we give a relation between the projections onto a closed convex cone X
and its polar cone X0 and X∗:

Lemma 2.1 Let X be a closed convex cone, X0, X∗ as defined in section 1, then we have

PX∗(x) = −PX0(−x) = x + PX(−x), ∀x ∈ Rn. (2.9)

Proof For any x ∈ Rn, the definition of PX(x) implies that

〈x − PX(x), y − PX(x)〉 ≤ 0, ∀y ∈ X. (2.10)

Since X is a cone, the above inequality yields

〈x − PX(x), PX(x)〉 = 0. (2.11)

It follows from (2.10) and (2.11) that

〈x − PX(x), y〉 ≤ 0; ∀y ∈ X, (2.12)

which means x − PX(x) ∈ X0, consequently

〈x − (x − PX(x)), y − (x − PX(x))〉 = 〈PX(x), y〉 − 〈PX(x), x − PX(x)〉 ≤ 0, ∀y ∈ X0.(2.13)

The above inequality shows that PX0(x) = x − PX(x). Because X∗ = −X0, we have

PX0(−x) = −PX∗(x), ∀x ∈ Rn, (2.14)

which gives (2.9). Thus the lemma is true. 2

Substitute the above relation into (2.8), by (2.6), we have

M(x, α) = 〈F (x), x〉 +
1

2α
(||PXC

(Cx − αC−T F (x))||2 − ||x||2G
+|| − αCx + C−T F (x) + PXC

(αCx − C−T F (x))||2 − ||F (x)||2G−1 )

= 〈F (x), x〉 +
1

2α
(||PXC

(Cx − αC−T F (x))||2 − ||x||2G
+||αCx − C−T F (x)||2 − ||PXC

(αCx − C−T F (x))||2 − ||F (x)||2G−1 )

=
1

2α
(||PXC

(Cx − αC−T F (x))||2 − ||x||2G − (||PXC
(αCx − C−T F (x))||2 − ||αx||2G))

=
1

2α
(||PX,G(x − αG−1F (x))||2G − ||x||2G − (||PX,G(αx − G−1F (x))||2G − ||αx||2G)).(2.15)
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It is pointed out in [9] that when the last two terms of (2.8) are dropped and C = In, α = 1,
(2.8) equals to (5.2) of Fukushima [2]. For (1.4), Fukushima [2] developed a differentiable
optimization method. The method mainly depends on the G-projection onto the constrained
set X . If we define H = PX,G(x − G−1F (x)), then the merit function of Fukushima can be
expressed as follows:

f(x) = −〈F (x), H − x〉 − 1

2
〈H − x, G(H − x)〉. (2.16)

For any constants α, β > 0, problem (1.2) is unchanged if we replace x by αx and F (x) by
βF (x) . Let H(α, β) = PX,G(αx − βG−1F (x)), it follows that

〈αGx − βF (x), H(α, β)〉 = ||H(α, β)||2G. (2.17)

Define

f(x, α, β) = −〈βF (x), H(α, β) − αx〉 − 1

2
〈H(α, β) − αx, G(H(α, β) − αx)〉, (2.18)

which can be viewed as a generalization of (2.16). Because X is a cone, it is not difficult to
show that

f(x, α, β) = α2f(x, 1, β/α). (2.19)

The above homogeneous property shows that we only need to consider f(x, α, 1) or f(x, 1, α).
The following result, connecting the implicit Lagrangian functions M(x, α) and the gener-
alized merit functions f(x, α, β), is an interesting discovery:

Lemma 2.2 For any α > 0, we have

M(x, α) =
f(x, 1, α) − f(x, α, 1)

α
=

f(x, 1, α)

α
− αf(x, 1,

1

α
). (2.20)

Proof From (2.15), (2.17) and (2.18), we have

f(x, 1, α) − f(x, α, 1) = −〈αF (x), H(1, α) − x〉 − 1

2
〈H(1, α) − x, G(H(1, α) − x)〉

+〈F (x), H(α, 1) − αx〉 +
1

2
〈H(α, 1) − αx, G(H(α, 1) − αx)〉

= 〈H(1, α), Gx − αF (x)〉 − 1

2
||H(1, α)||2G − 1

2
||x||2G

−〈H(α, 1), αGx − F (x)〉 +
1

2
||H(α, 1)||2G +

1

2
||αx||2G

=
1

2
(||PX,G(x − αG−1F (x))||2G − ||x||2G − (||PX,G(αx − G−1F (x))||2G − ||αx||2G))

= αM(x, α), (2.21)

The later part of (2.20) follows from (2.19) . Therefore, the lemma is true. 2
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3. Unconstrained methods for GCP

In last section, we have stated some definition and discussed the relations between a
generalized augmented Lagrangian method and the merit function in [2]. In this section, we
mainly consider the properties of these functions and use them to construct unconstrained
methods for (1.2). First we state some properties of the functions defined by (2.18). Because
X is a closed convex solid cone, similar to [1],[2], we have the following result.

Lemma 3.1 For each x ∈ Rn, let H(α, β) is the mapping defined in section 2. Then x
solves the generalized complementarity problem (1.2) if and only if αx is a fixed point of
H(α, β).

Let f(x, α, β) be defined by (2.18), it can be easily verified that

f(x, α, β) = −min
y∈X

〈βF (x) +
1

2
G(y − αx), y − αx〉

= − min
y∈XC

〈βC−T F (x) +
1

2
(y − αCx), y − αCx〉, α, β > 0. (3.1)

Similar to Theorems 3.1 and 3.2 of Fukushima [2], we have the following results.

Lemma 3.2 Let the function f(x, α, β) : Rn → R be defined by (2.18). Then f ≥ 0 for all
x ∈ X, and f = 0 if and only if x solves the generalized complementarity problem (1.2).
Furthermore, if F (x) is continuously differentiable, then f is also continuously differentiable
and its gradient is given by

∇f = αβF (x) − [β∇FT (x) − αG](H(α, β) − αx). (3.2)

Let H1 = H(1, α), H2 = H(1, 1
α
) = 1

α
H(α, 1), for any α > 1, we have:

M(x, α) =
f(x, 1, α)

α
− αf(x, 1,

1

α
)

= −〈F (x) +
1

2α
G(H1 − x), H1 − x〉 − αf(x, 1,

1

α
)

≥ −α〈 1

α
F (x) +

1

2α2
G(H2 − x), H2 − x〉 − αf(x, 1,

1

α
)

= (
α2 − 1

2α
)||H2 − x||2G

≥ 0 (3.3)

Combining Lemmas 3.1 and 3.2, we have the following result:

Theorem 3.3 Let M(x, α) be defined by (2.15) with α > 1, X as stated in section 2, then
x∗ solves the generalized complementarity (1.2) if and only if M(x∗, α) = 0.
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It is obvious that M(x, 1) ≡ 0. When α < 1, it follows from (2.20) and (2.19) that
M(x, α) = −M(x, 1/α), so M(x, α) ≤ 0 and x∗ is a global maximum solution of M(x, α).

From (3.2), we have that

∇M(x, α) = −(∇FT − 1

α
G)(H(1, α) − x) + (∇FT − αG)(H(1,

1

α
) − x), (3.4)

which is a generalization of (2.9) of [9]. One can show that, if x∗ solves GCP (1.2) and the
mapping F (x) is continuously differentiable, it must hold ∇M(x∗, α) = 0.

In [9], under certain assumptions, the local properties of the method is discussed. In the
following part of this section, we mainly concern about the differentiablity of M(x, α) in a
neighbor ball of its global solution x∗.

Let x∗ be the solution of (1.2), we define

N(x∗) = Span{d : d ∈ Rn, x∗ + αd ∈ X, for all sufficient small α ∈ R}. (3.5)

The definition implies that N(x∗) is a subspace in Rn. For simplity, we denote it by N . It
follows from (1.4) that

〈F (x∗), d〉 = 0, ∀d ∈ N. (3.6)

Let the orthogonal complement space of N be N⊥, thus F (x∗) ∈ N⊥. Define

X1 = PN (X) = {y| y = PN (x), x ∈ X};
X2 = PN⊥(X) = {y| y = PN⊥(x), x ∈ X}. (3.7)

Then one can easily show that x∗ is a relative interior of X1 or equivalently x∗
X1

> 0.
Furthermore, for any x ∈ X , it must hold:

x = x1 + x2, x1 = PN (x) ∈ X1, x2 = PN⊥(x) ∈ X2. (3.8)

Therefore, for any x ∈ X , (1.4) implies that:

0 ≤ 〈F (x∗), x − x∗〉
= 〈F (x∗), PN (x) − x∗〉 + 〈F (x∗), PN⊥(x)〉
= 〈F (x∗), PN⊥(x)〉. (3.9)

Let X∗
2 be the dual cone of X2 in subspace N⊥ such that

X∗
2 = {x|x ∈ N⊥, 〈x, y〉 ≥ 0, ∀y ∈ X2}.

To obtain a neat form of the Hessian of M(x, α), we make the following assumptions:

Assumption 1 1) X∗
2 is solid in N⊥.

2) F (x∗) is an interior of X∗
2 .
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It is obvious that this assumption equals to F (x∗)
X∗

2

> 0. If Assumption 1 are satisfied, we
call x∗ a nondegenerate solution of the GCP (1.2), correspondently Assumption 1 is called
a generalized strict complementarity condition. It is not hard to show that Assumption 1
reduce to the general strict complementarity conditions if X is the nonnegative orthant of
Rn.

In what follows , we give an equivalent condition for Assumption 1. Define

N1 = Span{d : d ∈ Rn, F (x∗) + αd ∈ X∗, for all sufficient small α ∈ R}. (3.10)

We have the following result

Lemma 3.4 If x∗ is a solution of the GCP (1.2), then N⊥N1, consequently

dim(N) + dim(N1) ≤ n. (3.11)

Proof From the definitions of N and N1, we have

〈x∗ + td, F (x∗) + sy〉 ≥ 0, ∀d ∈ N, y ∈ N1, (3.12)

if t ∈ R and s ∈ R are sufficiently small. The above inequality, (3.6) and 〈x∗, F (x∗)〉 = 0
give that

st〈d, y〉 + t〈x∗, y〉 ≥ 0, (3.13)

for all sufficiently small s and t, which shows that

〈x∗, y〉 = 0; (3.14)

〈d, y〉 = 0. (3.15)

The later equality proves the lemma. 2

Our next result derives another equivalent condition for the generalized strict comple-
mentarity condition:

Lemma 3.5 If x∗ is a solution of the GCP (1.2), then Assumption 1 hold if and only if

N1 = N⊥. (3.16)

Proof 1) of Assumption 1 implies

dim(X∗
2 ) = dim(N⊥) = n − dim(N). (3.17)

The definitions of X2 and X∗
2 show that

X∗
2 ⊂ X∗, (3.18)
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which, combining 2) of Assumption 1 and (3.10), yield that

SpanX∗
2 ⊂ N1. (3.19)

It follows that
dim(N1) ≥ dim(X∗

2 ) = dim(N⊥). (3.20)

The above inequality and Lemma 3.3 give (3.16).

Assume (3.16) holds, it follows from the definition of X∗
2 that

X∗
2 = X∗ ∩ N⊥ = X∗ ∩ N1. (3.21)

This relation shows
dim(X∗

2 ) = dim(N1) = dim(N⊥) (3.22)

which says that X∗
2 is solid in N⊥. (3.10) and (3.21) imply that F (x∗) is an interior of X∗

2

in the subspace N1. 2

Define

NC = Span{d|Cx∗ + αd ∈ XC , for all sufficiently small α ∈ R, }
= Span{d|d = Cd1, ∀d1 ∈ N}. (3.23)

By lemma 3.4, if assumption 1 is true, one can show that

NC1 = Span{d : d ∈ Rn, C−T F (x∗) + αd ∈ (XC)∗, for all sufficient small α ∈ R}
= N⊥

C = Span{d|d = C−T d1, ∀d1 ∈ N⊥}. (3.24)

If we define similar sets XC1 and XC2, (XC2)
∗, it follows that

Cx∗
XC1

> 0, C−T F (x∗)
(XC2)∗

> 0. (3.25)

By the definition of NC , there exists a projection matrix A and A = AT = A2 such that

PNC
(x) = Ax, ∀x ∈ Rn. (3.26)

Because x∗ is a solution of (2.4), we have

PNC
(Cx∗) = ACx∗ = Cx∗, PN⊥

C

(C−T F (x∗)) = AC−T F (x∗) = 0. (3.27)

Assume x∗ is a nondegenerate solution of the GCP (1.2). Let B(x, ǫ) be the neighbor
ball of x defined as follows:

B(x, ǫ) = {y : ||y − x|| < ǫ, y ∈ Rn}. (3.28)

For continuous mapping F (x), Assumption 1 and the fact that Cx∗ is a relative interior of
XC1 imply

PN⊥

C

(C−T F (x) − Cx) ∈ (XC2)
∗, PNC

(Cx − C−T F (x)) ∈ XC1, ∀x ∈ B(x∗, ǫ), (3.29)
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if ǫ > 0 is sufficiently small. For such x ∈ B(x∗, ǫ) and any y ∈ XC , we have:

〈Cx − C−T F (x) − PNC
(Cx − C−T F (x)), y − PNC

(Cx − C−T F (x))〉
= 〈PN⊥

C

(Cx − C−T F (x)), PNC
(y) − PNC

(Cx − C−T F (x))〉 + 〈PN⊥

C

(Cx − C−T F (x)), PN⊥

C

(y)〉
= −〈PN⊥

C

(F (x) − x), PN⊥

C

(y)〉 ≤ 0, (3.30)

which implies that

PXC
(Cx−C−T F (x)) = PNC

(Cx−C−T F (x)) = A(Cx−C−T F (x)), ∀x ∈ B(x∗, ǫ), (3.31)

The above relation, with (2.6) and (3.4) shows that for any x ∈ B(x∗, ǫ)

∇M(x, α) = −(∇FT − 1
α
G)[C−1ACx − αC−1AC−T F − x]

+(∇FT − αG)[C−1ACx − 1
α
C−1AC−T F − x], (3.32)

which indicates that M(x, α) is twice differentiable near x∗ if F (x) is twice differentiable.
So it follows from (3.27) that

∇2M(x∗, α) = −(∇FT − 1

α
G)[C−1AC − αC−1AC−T∇F − I]

+(∇FT − αG)[C−1AC − 1

α
C−1AC−T∇F − I]

=
α2 − 1

α
[∇FT C−1AC−T∇F + G − CT AC]. (3.33)

Because A is a projection matrix, it holds

A = AT = A2, I − A = (I − A)T = (I − A)2. (3.34)

It follows that

∇2M(x∗, α) =
α2 − 1

α
[∇FT C−1A, CT (I − A)]

[

AC−T∇F
(I − A)C

]

. (3.35)

Thus, we have the following result:

Theorem 3.6 Let x∗ ∈ Rn be a nondegenerate solution of the GCP (1.2), if F (x) is twice
differentiable at x∗ and if

[∇FT C−1A, CT (I − A)] (3.36)

is of rank n, then x∗ is a strictly local minimizer of M(x, α) for any α > 1.

When X is the nonnegative orthant and C = I, condition (3.36) reduces to the linear
independence of the gradients of inactive constraints . When X = Rn, our method equals
to minimizing the G-norm of F (x).

4. Numerical results

A FORTRAN subroutine is designed to test our method. We use the BFGS method
with inexact line searches to the unconstrained optimization problem

min
x∈Rn

M(x, α), α > 1. (4.1)
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The stopping criterion is that ||∇M(x, α)|| ≤ 10−8 . Due to M(x, α) = −M(x, 1
α
), (5.1) is

equivalent to
min
x∈Rn

−M(x, α), α < 1. (4.2)

In our numerical tests, we let the matrix G = In simplily. The two problems in [9] are tested
by our method and the results are reported in Tables 1-2.
Problem 1.

F1(x) = 3x2
1 + 2x1x2 + 2x2

2 + x3 + 3x4 − 6,

F2(x) = 2x2
1 + x1 + x2

2 + 10x3 + 2x4 − 2,

F3(x) = 3x2
1 + x1x2 + 2x2

2 + 2x3 + 9x4 − 9,

F4(x) = x2
1 + 3x2

2 + 2x3 + 3x4 − 3.0.

This problem has two solution, one is a degenerate solution x̄1 = (
√

6/2, 0, 0, 1/2), another
one is a nondegenerate solution x̄2 = (1, 0, 3, 0). For different α and initial points, we have
the following result:

Tabel 1

Value of α Initial point Solution NI/NF/NG Val. of. M(x, α)
1.5 (0,0,0,0) x̄1 38/57/44 0.929372E-19
0.5 x̄1 37/63/47 0.21904E-18
0.2 x̄1 54/90/67 0.109251E-15
1.5 (1,-1,-1,1) x̄2 22/37/26 0.627194E-20
0.5 x̄2 21/31/24 0.183154E-19
0.2 x̄2 21/35/26 0.208077E-19
0.5 (-1,1,1,-1) x̄1 43/66/49 0.90732E-15
0.2 x̄1 55/80/62 0.203612E-16
100 (-2,-2,-2,-2) x̄1 57/107/72 0.758048E-16
0.2 x̄1 38/67/50 0.294449E-16
1.5 (100,100,100,100) x̄2 40/65/48 0.351688E-18
0.2 x̄1 35/59/41 0.689323E-18

In all the tables in this paper, NI is the number of iterations, NF and NG are the numbers
of the evaluations of function M(x, α) and its gradient respectively. It is easy to see that,
for most cases, our method converges to the solution of the original problem with properly
chosen α.
Problem 2.

F1(x) = −x2 + x3 + x4,

F2(x) = x1 − 0.75(x3 + βx4)/x2,

F3(x) = 1 − x1 − 0.25(x3 + βx4)/x3,

F4(x) = β − x1.

For different β and appropriately chosen α, we have the following result:

Tabel 2
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Val. of β Val. of α Initial point Solution NI/NF/NG Val. of. M(x, α)

2.0 2.0 (1,1,1,1)
(0.75, 1.663205,
1.663205, 0)

10/13/11 0.459804E-17

5.0
(0.75, 1.679367,
1.679367, 0)

10/16/11 0.191726E-18

50 (10,10,10,10)
(0.75, 10.49145,
10.49145, 0)

15/28/18 0.366259E-18

0.5 2.0 (1,1,1,1)
(0.5, 1.36502,
0.455, 0.91)

12/16/14 0.962439E-17

20
(0.5, 0.871568,
0.290553, 0.581106)

15/33/21 0.561812E-20

5.0 (100,100,100,100)
(0.5, 131.417973,
43.806, 87.61198)

19/37/31 0.396077E-17

20
(0.5, 146.2952,
48.765, 97.53)

14/39/29 0.842419E-19

We also use our method for a generalized linear complementarity problem which has the
following form:
Problem 3.

F1(x) = 10x1 − 5x2 − 1,

F2(x) = x1 + 5x2,

F3(x) = −3x1 − 3x2 + 8x3 + 2x4 − x5,

F4(x) = −4x1 − 4x2 + 2x3 + 9x4 + 2x5,

F5(x) = −5x1 − 5x2 − x3 + 4x4 + 15x5.

with the constrained set X = {x : x5 ≥ 0,
∑4

i=1 x2
i ≤ x2

5, x ∈ R5}. For different α and
initial points, our method converges to the same point :
x∗ = (0.0480333,−0.00309967, 0.00960245, 0.0031883, 0.0491851), the following is our result:

Tabel 3

Value of α Initial point NI/NF/NG Val. of. M(x, α)
1.5 (0,0,0,0,0) 24/50/33 0
5 28/62/37 0
1.5 (1,1,1,1,1) 23/41/29 0.60422E-17
5 36/64/40 0.1036E-16
1.5 (10,10,10,10,10) 26/47/33 0.4228E-17
5 33/51/35 0
1.5 (1000,1000,1000,1000,1000) 34/55/41 0
5 40/70/49 0
1.5 (-100,-100,-100,-100,-100) 27/45/33 0.3943E-17
5 24/49/30 0
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