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Abstract

In this paper we present a trust region method of conic model for
linearly constrained optimization problems. We discuss trust region
approachs with conic model subproblems. Some equivalent variation
properties and optimality conditions are given. A trust region algo-
rithm based on conic model is constructed. Global convergence of the
method is proved.
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1. Introduction

Trust region methods have very nice global and local convergence proper-
ties, and it has been shown that they are very effective and robust for solving
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unconstrained and constrained optimization problems ( for exampel, see [2],
[3], [4], [6] , [8], [9], [11], [12], [13], [15], [17] and [22]). Conic model methods,
a generalization of quadratic model methods, possess more degree of free-
dom, can incorporate more information in the iterations, and provide both
a powerful unifying theory and a effective means for optimization problems
[1] [4] [5] [10] [16] [19] [21].

In [4], we present a trust region method of conic model for unconstrained
optimization problems. As a continuing work, in this paper, we describe a
trust region method of conic model to solve linearly constrained optimization
problem

min f(x) (1.1)

s.t. AT x = b, (1.2)

where f : Rn → R is continuously differentiable, A ∈ Rn×m, x ∈ Rn, b ∈
Rm, rank(A) = m. Our method is iterative, and the trust region subproblem
solved in each iteration is the minimization of a conic model subject to the
linear constraints and an additional trust region constraint.

Normally , numerical methods for solving optimization problem (1.1)-
(1.2) are reduced gradient method, projected gradient method and reduced
quasi-Newton method which are based on quadratic model. Using null space
techniques, the constrained problem (1.1)-(1.2) can be transformed to an
unconstrained problem. In order to incorporate more useful interpolation
information in constructing subproblems, Davidon [5] suggested a new model
– conic model. A typical conic model for unconstrained optimization is as
follows:

ψ(s) = fk +
gT

k s

1− aT s
+

1

2

sT Aks

(1− aT s)2
, (1.3)

where fk = f(xk), gk = ∇f(xk), Ak ∈ Rn×n is a symmetric matrix, the vector
a ∈ Rn is a vector satisfying 1− aT s > 0. If a = 0, ψ(s) is quadratic.

The conic model (1.3) can be also written as the following form of the
collinear conic model:

ψ(s) = fk + gT
k w +

1

2
wT Akw (1.4)

s =
w

1 + aT w
. (1.5)
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It follows from (1.4)-(1.5) that

s =
−A−1

k gk

1− aT A−1
k gk

is a minimizer of ψ(s) if Ak is positive definite.
Sorensen [16] discussed collinear scaling methods for unconstrained opti-

mization. For the scaling function

φk+1(w) = f(x̄(w)) = f(xk+1 +
w

1 + hT
k+1w

),

the corresponding quadratic model is

ψk+1(w) = φk+1(0) + φ′k+1(0)w +
1

2
wT Bk+1w,

which satisfies the following interpolation conditions

ψk+1(0) = φk+1(0), ψ′k+1(0) = φ′k+1(0),

ψk+1(−v) = φk+1(−v), ψ′k+1(−v) = φ′k+1(−v),

where v ∈ Rn is chosen such that 1− hT
k+1v > 0.

Di and Sun [4] consider a trust region method of conic model for uncon-
strained optimization. They give the following model

min ψ(s) = fk +
gT

k s

1− aT s
+

1

2

sT Bks

(1− aT s)2
(1.6)

s.t. ‖Ds‖ ≤ ∆k (1.7)

or equivalently

min fk + gT
k Jkw +

1

2
wT Bkw (1.8)

s.t. s =
Jkw

1 + hT w
, ‖Ds‖ ≤ ∆k. (1.9)

They construct a trust region algorithm based on the above model, and give
convergence analyses.
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In this paper we generalize the trust region method of conic model for
unconstrained optimization to solve linearly constrained optimization prob-
lem (1.1)-(1.2). In Section 2, the motivation of a detailed description of our
method are given. Convergence analyses of the new algorithm are presented
in Section 3.

2. Motivation and Description of the Algorithm

Assume that the current point xk is feasible, namely AT xk = b, it is
easy to see that the constrained condition is equivalent to AT s = 0 if we let
x = xk + s. Therefore it is reasonable to use the following subproblem:

min ψk(s) (2.1)

s.t. AT s = 0 (2.2)

‖s‖ ≤ ∆k (2.3)

where

ψk(s) =
gT

k s

1− hT s
+

1

2

sT Bks

(1− hT s)2
, (2.4)

and gk = g(xk) = ∇f(xk), Bk is an approximation of the Hessian matrix
∇2f(xk) and h ∈ Rn is a horizon vector such that 1− hT s > 0.

Comparing the above subproblem with (1.8)-(1.9), one can easily see that
we have choose D = I and Jk = I for all k. It should be pointed out our
results in the paper can be extented to general D and Jk, and we make
these special choices for the convenience of convergence analyses. Though
theoretical analyses are nearly identical for general D and Jk, numerical
performances of the algorithms will vary for different choices of D and Jk.

We will use a null space technique to handle the constraint (2.2). Let
Y ∈ Rn×m and Z ∈ Rn×(n−m) be two matrices that satisfy

AT Y = I, AT Z = 0, ZT Z = I

with rank(Z) = n−m. For example, Y and Z can be obtained from the QR
decomposition of A. Assume that

A = Q

[
R
0

]
= [Q1 Q2]

[
R
0

]
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where Q is n × n orthogonal matrix, R ∈ Rm×m is a nonsingular upper
triangular matrix, and Q1 and Q2 are n × m and n × (n − m) matrices
respectively. We can choose

Y = (A+)T = Q1R
−T ,

Z = Q2,

where A+ is a Moore-Penrose inverse (see [6] [7]). Since A is a column full-
rank matrix, then A+ = (AT A)−1AT . Obviously, the columns of Z form an
orthogonal basis for the null space of AT . Therefore condition (2.2) reduced
to s = Zu , where u ∈ Rn−m. Therefore our subproblem (2.1)-(2.3) can be
rewritten as

min ψ̂k(u) =
ĝT

k u

1− ĥT u
+

1

2

uT B̂ku

(1− ĥT u)2
(2.5)

s.t. ‖u‖ ≤ ∆k, (2.6)

where ĝk = ZT gk is a reduced gradient, B̂k = ZT BkZ is a reduced Hessian
approximation and ĥ = ZT h is a reduced horizon vector. In fact the above
subproblem (2.5)-(2.6) is a conic trust region subproblem for the uncon-
strained optimization

min
x̂∈<n−m

f̂(x̂) (2.7)

where f̂(x̂) = f(xk + Zx̂). Problem (2.5)-(2.6) can be solved by techniques
given by Di and Sun [4]. It is easy to see that a solution uk of (2.5)-(2.6)
satisfies

(B̂k − ĝkĥ
T + µkI)uk = −ĝk + µk∆

2
kĥ, (2.8)

µk(‖uk‖ −∆k) = 0, (2.9)

which, in fact, is the first order optimality condition for problem (2.5)-(2.6),
where µk ≥ 0 is a Kuhn-Tucker multiplier.

Lemma 2.1 Conic model subproblem (2.1) with trust region in constrained
form can be transformed to a quadratic model subproblem with trust region
in unconstrained form.
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Proof. Let w = s
1−hT s

(i.e., s = w
1+hT w

), then (2.1) becomes

min gT
k w +

1

2
wT Bkw (2.10)

s.t. AT w = 0 (2.11)

‖ w

1 + hT w
‖ ≤ ∆k (2.12)

which is to minimize a quadratic function subject to linear constraints and
a conic type trust region constraint. This trust region always lies in {x̄ ∈
Rn| 1 + hT (x̄− x̄k) > 0} for any ∆k and x̄ = x̄k + w.

Set w = Zŵ, ĝk = ZT gk, B̂k = ZT BkZ, ĥ = ZT h, then (2.10)-(2.12)
becomes

min ĝkŵ +
1

2
ŵT B̂kŵ (2.13)

s.t.
ŵT ŵ

(1 + ĥT ŵ)2
≤ ∆2

k. (2.14)

Note that the conic trust region (2.14) can be written as an ellipsoid trust
region. In fact, (2.14) is equivalent to

ŵT ŵ ≤ (1 + ĥT ŵ)2∆2
k. (2.15)

Let Q be the orthogonal rotation matrix such that

Qĥ = ‖ĥ‖e1, (2.16)

where e1 = (1, 0, . . . , 0)T . It can be shown that (2.15) is equivalent to

θ(w̄1 − ω)2 + w̄2
2 + · · ·+ w̄2

n ≤ ∆̄2
k, (2.17)

where {w̄i, i = 1, · · · , n} are components of the vector w̄ = Qŵ, and

θ = 1− ‖ĥ‖2∆2
k, ω =

‖ĥ‖∆2
k

θ
, ∆̄k =

∆k√
θ
. (2.18)

Define
ẑ = w̄ − ωe1, V = diag(θ, 1, · · · , 1), (2.19)
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(2.17) reduces to
ẑT V ẑ ≤ ∆̄2

k. (2.20)

Therefore, subproblem (2.13)-(2.14) becomes

min ḡT
k ẑ +

1

2
ẑT B̄kẑ (2.21)

s.t. ẑT V ẑ ≤ ∆̄2
k, (2.22)

where ḡk = Qĝk, B̄k = QB̂kQ
T . Setting z = V

1
2 ẑ (2.21)Φ-(2.22) yield

min g̃T
k z +

1

2
zT B̃kz (2.23)

s.t. ‖z‖ ≤ ∆̄k, (2.24)

where g̃k = V
1
2 ḡk, B̃k = V

1
2 B̄kV

1
2 . (2.23)-(2.24) just is the desired quadratic

model subproblem with trust region in unconstrained form, which can be
solved by algorithms by [9]. 2

From the above analyses, it can be seen that five supbproblems, (2.1)-
(2.2), (2.5)-(2.6), (2.10)-(2.12), (2.13)-(2.14), and (2.23)-(2.24), are equiv-
alent. Therefore in the algorithm we can solve any of them. Since our
subproblem is based on conic model, these models possess more degree of
freedom to incorporate interpolation information in iterative processes.

In the following we give a description of our algorithm. Reduced quasi-
Newton methods are used to update the conic model. In the reduced form
of updating B̂k, updating formula is written as

B̂k+1 = U(B̂k, vk, rk),

where updating relation U is BFGS or DFP formula. The conic model sat-
isfies the following generalized quasi-Newton equation:

B̂k+1vk = rk, vk = γkuk, ĥT
k+1vk = 1− γk,

where

rk = ĝk+1 − 1

γk

[I + ĥk+1u
T
k ]ĝk,

ĥk+1 =
1− γk

γkuT
k pk

pk,
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where pk ∈ Rn such that uT
k pk 6= 0.

Generally, we have two choices for pk.
(1) Set pk = ĝk, then

ĥk+1 =
1− γk

γkuT
k ĝk

ĝk
4
=αkĝk, rk = yk/γk,

where yk = γkĝk+1 − 1
γk

ĝk.

(2) Set pk = ĝk+1, then

ĥk+1 =
1− γk

γkuT
k ĝk+1

ĝk+1
4
=αk+1ĝk+1,

rk = βkĝk+1 − 1

γk

ĝk,

where

βk = 1− 1− γk

γ2
k

uT
k ĝk

uT
k ĝk+1

.

In the following algorithm the ratio of the actual reduction and the pre-
dicted reduction is defined as

ρk =
Aredk

Predk

=
f(xk)− f(xk + sk)

−ψ̂k(uk)
.

Note that sk = 0 if and only if xk is a Kuhn-Tucker point of (1.1).

Algorithm 2.2 (Conic Trust Region Algorithm for Linear Constrained Op-
timization)

Step 0. Given a starting point x0, an initial approximation to the
reduced Hessian B̂0 ∈ Rn×n, an initial trust region radius ∆0

and ε > 0. Given Z satisfying AT Z = 0 with rank(Z) =
n −m. Set µ ∈ [0, 1), η ∈ (µ, 1), 0 < ξ0 < ξ1 < 1 < ξ2. Set
k = 0.

Step 1. Compute f(xk), g(xk) and ĝk = ZT gk. If ‖ĝk‖ ≤ ε, stop.

Step 2. Solve the trust region subproblem (2.5) of conic model for uk

and sk.
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Step 3. Compute

ρk =
f(xk)− f(xk + sk)

−ψ̂k(uk)
.

Step 4. Set

xk+1 =
{

xk + sk if ρk > µ,
xk otherwise ;

(2.25)

and let the new trust region bound satisfy

∆k+1 ∈ [∆k, ξ2∆k], if ρk ≥ η (2.26)

∆k+1 ∈ [ξ0‖sk‖, ξ1∆k], if ρk < η. (2.27)

Step 5. Update B̂k.

%k = [(f̂(x̂k)− f̂(x̂k+1))
2 − ĝT

k ukĝ
T
k+1uk]

1
2 ,

γk = − ĝT
k uk

f̂(x̂k)−f̂(x̂k+1)+%k
,

vk = γkuk,
yk = γkĝk+1 − 1

γk
ĝk,

rk = yk/γk,
αk = 1−γk

γkuT
k

ĝk
,

B̂k+1 = U(B̂k, vk, rk),

ĥk+1 = αkĝk.

Step 6. k := k + 1, go to Step 1.

In our algorithm, we can allow µ = 0. By setting µ = 0, the algorithm
has the nice property that any “better” point will be accepted. However the
convergence results are not the same for the case µ = 0 and µ > 0.

3. Global Convergence

In this section, we give the convergence results of our algorithm given in
the previous section.

The following lemma is important for convergence analyses of trust region
algorithms, which is a generalization of a result by Powell [11] for uncon-
strained optimization.
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Consider

min ψ̂k(u) =
ĝT

k u

1− ĥT u
+

1

2

uT B̂ku

(1− ĥT u)2
(3.1)

s.t. ‖u‖ ≤ ∆k.

Lemma 3.1 If uk is the solution of (3.1) and if ‖ · ‖ is the l2 norm, then

Predk(uk) = −ψ̂k(uk) ≥ 1

2
‖ĝk‖min{∆̃k,

‖ĝk‖
‖B̂k‖

}, (3.2)

where

∆̃k =
∆k

1 + ∆kĥT ĝk/‖ĝk‖
. (3.3)

Proof. Let v = u
1−ĥT u

, then u = v
1+ĥT v

and (3.1) becomes

ĝT
k v +

1

2
vT B̂kv.

Let v(τ) = −τ ĝk

‖ĝk‖ , τ > 0, then

u(τ) =
−τ ĝk

‖ĝk‖ − τ ĥT ĝk

(3.4)

and

φ(τ) = φ(u(τ)) = −τ‖ĝk‖+
1

2
τ 2mk, (3.5)

where

mk =
ĝT

k B̂kĝk

‖ĝk‖2
.

τ ∗ = ‖ĝk‖
mk

is the minimizer of (3.5).

If ‖u(τ ∗)‖ ≤ ∆k, then

φ(τ ∗) = −1

2

‖ĝk‖2

mk

≤ −1

2

‖ĝk‖2

‖B̂k‖
. (3.6)

If ‖u(τ ∗)‖ = τ∗‖ĝk‖
|‖ĝk‖−τ∗ĥT ĝk| ≥ ∆k, we choose τ0 such that

τ0‖ĝk‖
|‖ĝk‖ − τ0ĥT ĝk|

= ∆k,

10



i.e.,

τ0 =
∆k

|1 + ∆kĥT ĝk/‖ĝk‖|
≡ ∆̃k,

then τ ∗ > τ0, that is
‖ĝk‖
mk

≥ ∆̃k.

Then

φ(τ ∗) ≤ −1

2
‖ĝk‖∆̃k(2− ∆̃k

mk

‖ĝk‖) (3.7)

≤ −1

2
‖ĝk‖∆̃k.

Since ψ̂k(uk) ≤ φ(τ ∗), the result follows from (3.6) and (3.7). 2

The condition (3.2) is quite general. First, it allows the step uk to be
obtained by several methods. Second, the reduced horizon vector ĥ can be
chosen as long as it satisfies 1− ĥT u > 0. In above algorithm we use ĥ = ĝk.
Third, it allows choosing l1, l2 or l∞ norm.

If the accumulation point x∗ of the sequence {xk} generated from Algo-
rithm 2.2 satisfies

ZT∇f(x∗) = 0,

i.e., ∇f(x∗) ∈ N(ZT ), where N(·) denotes null space, then there is λ∗ ∈ Rm

such that
∇f(x∗) = Aλ∗,

which means any accumulation point x∗ of the sequence {xk} generated from
Algorithm 2.2 is a Kuhn-Tucker point of the original problem (1.1).

Next we give the global convergence theorem which says the reduced
gradients converge to zero. Hence, any accumulation point of the sequence
of iterates satisfies the first order necessary condition for a solution to (1.1).

Theorem 3.2 Let f : Rn → R be continuously differentiable and bounded
below on an feasible region. Assume {B̂k} bounded uniformly, i.e., there is a
positive constant M such that

‖B̂k‖ ≤ M, ∀k.
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Then, Algorithm 2.2 will terminate after finitely many iterations provided
that {f(xk), k = 1, 2, ...} is bounded below . In other words, if ε = 0, then
either

lim
k→∞

f(xk) = −∞, (3.8)

or
lim inf

k→∞
‖ĝk‖ = 0. (3.9)

Proof. If the theorem is not true, then f(xk) is bounded below and there
exists a positive constant δ such that

‖ĝk‖ ≥ δ (3.10)

which, togehter with Lemma 3.1, implies that

Predk(uk) ≥ τ min[1, ∆k] (3.11)

for some positive constant τ .
Define the set

K0 = {k|ρk ≥ η}. (3.12)

Inequality (3.11) and the assumption that f(xk) is bounded below give that
∑

k∈K0

∆k < ∞. (3.13)

Because ∆k+1 ≤ ξ1∆k for all k 6∈ K0, if follows from (3.13) that

∞∑

k=1

∆k < ∞. (3.14)

Therefore Therefore there exists x̄ such that

lim
k→x̄

xk = x̄. (3.15)

Relation (3.14) shows that ∆k → 0. Thus it follows from (3.11) that

Predk(uk) ≥ τ∆k (3.16)

for all sufficiently large k. (3.16) and the fact that Predk = Aredk + O(∆2
k)

indicate that
lim
k→∞

ρk = 1, (3.17)
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which yields that, for sufficiently large k,

∆k+1 ≥ ∆k. (3.18)

The above inequality contradicts (3.14). The contradiction proves the theo-
rem. 2

If µ > 0, the convergence result can be further improved.

Theorem 3.3 Under the conditions of Theorem 3.2, if µ > 0, then every
accumulation point of {xk} is a Kuhn-Tucker point of (1.1)-(1.2).

Proof If the theorem is not true, there exist an accumulation point x̄∗

which is not a KT point of problem Thus, there exist positive constants τ̄
and ε̄ such that

Predk(uk) ≥ τ̄ min[1, ∆k] (3.19)

provided that ||xk − x̄∗|| ≤ ε̄. Define the sets

K1 = {k| ρk > µ} (3.20)

K̄ = {k| ||xk − x̄∗|| ≤ ε̄}. (3.21)

Because µ > 0, the set K1 has similar properties as K0 given in the proof of
the previous theorem. Therefore it can be shown that

∑

k∈K1∩K̄

∆k < ∞. (3.22)

Hence there exists k̂ such that

||xk̂ − x̄∗|| < 1

2
ε̄, (3.23)

and ∑

k∈K1∩K̄,k≥k̂

∆k <
1

2
ε̄. (3.24)

The above two inequalities imply that xk ∈ K̄ for all k ≥ k̂. Therefore
∞∑

k=1

∆k < ∞, (3.25)

which implies that
lim xk = x̄∗. (3.26)

From the above relation, we can obtain a contradiction as in the proof of the
previous theorem. This completes our proof. 2
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