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Abstract. Trust-region methods are powerful optimization methods. The conic model method is a new
type of method with more information available at each iteration than standard quadratic-based methods.
Can we combine their advantages to form a more powerful method for constrained optimization? In this
paper we give a positive answer and present a conic trust-region algorithm for non-linearly constrained
optimization problems. The trust-region subproblem of our method is to minimize a conic function subject
to the linearized constraints and the trust region bound. The use of conic functions allows the model
to interpolate function values and gradient values of the Lagrange function at both the current point and
previous iterate point. Since conic functions are the extension of quadratic functions, they approximate
general nonlinear functions better than quadratic functions. At the same time, the new algorithm possesses
robust global properties. In this paper we establish the global convergence of the new algorithm under
standard conditions.
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1. Introduction

In this paper we consider a general optimization problem with nonlinear equality con-
straints

min fix) (1.1)
xeR"
S.t. c(x) = 0, (1.2)
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where cix) = iciix),..., Cmix))^, fix), qix), i = 1 m, are twice continuously
differentiable. The Lagrangian function for problem (1.1), (1.2) is defined as

Ciix), (1.3)

where A, for i = 1 , . . . , m are Lagrange multipliers. We use the notation gix) =
and Aix) = [aiix),... ,amix)] = [Vci(jc),. . . , Vcmix)] which is an n x m matrix. The
constraint gradients Vc,- ix) are assumed to be linearly independent for all x. Throughout
this paper we define Aixk) = Ak, gixk) = gk, cixk) = Ck for the ikth iteration. The
sequential quadratic programming method for (1.1), (1.2) computes a search direction
by minimizing a quadratic model of the Lagrangian subject to the linearized constraints.
That is, at the kth iteration, the following subproblem:

nun gJd + \d'Bkd (1.4)

s.t. Ald + Ck = O (1.5)

is solved to obtain a search direction dk, where Xk is the current iterate point and Bk
is symmetric and an approximation to the Hessian V^xLixk, A.*) of the Lagrangian of
problem (1.1), (1.2). The next iteration has the form

Xk+i=Xk+akdk, (1.6)

where a^ > 0 is a step length which satisfies some line search conditions (see Han [14],
Powell [21], Powell and Yuan [23], Yuan and Sun [33]).

Trust-region methods for problem (1.1), (1.2) have been studied by many re-
searchers, including Vardi [30], Byrd, Schnabel and Schultz [3], Toint [29], Zhang and
Zhu [34], Powell and Yuan [23] and El-Alem [8], etc. It is especially worth mentioning
that the book of Conn, Gould and Toint [5] is an excellent and comprehensive one on
trust-region methods. Trust-region methods are robust, can be applied to ill-conditioned
problems and have strong global convergence properties. Another advantage of trust-
region methods is that there is no need to require the approximate Hessian of the trust-
region subproblem to be positive definite. For unconstrained problems, Nocedal and
Yuan [18] show that a trust-region trial step is always a descent direction for any ap-
proximate Hessian. It is well known that for line search methods one generally has to
assume the approximate Hessian to be positive definite in order to ensure that the search
direction is a descent direction.

The collinear scaling of variables and conic model method for unconstrained opti-
mization have been first studied by Davidon [6]. Sorensen [26] published detailed results
on a class of conic model method and proved that a particular member of this class has
the g-superlinear convergence. Ariyawansa [1] modified the derivation of Sorensen
[26] and established the duality between the collinear scaling BFGS and DPP methods.
Ariyawansa and Lau [2] derived the collinear scaling Broyden's family and established
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its superlinear convergence results. Sheng [25] studied further the interpolation prop-
erties of conic model method. Sun [27] analysed several non-quadratic model methods
and pointed out that the collinear scaling method is one of nonlinear scaling methods
with scale invariance. A typical conic model for unconstrained optimization is

which is an approximation to fiXk -V s) — fiXk) and coincides up to first order with the
objective function, where Bk is an approximate Hessian of fix) at Xk. The vector hk
is the associated vector for the collinear scaling in the fcth iteration, and it is normally
called the horizontal vector. If hk = 0, the conic model reduces to a quadratic model.

Di and Sun [7] present a trust-region method based on conic model for uncon-
strained optimization where the trust-region subproblem has the form

gjs 1 sBkS
min rjfkis) = - ^ ^ + ^ (1.8)

l h ] s 2 i l h l s ) ^

s.t. IID^sll < Ak, (1.9)

where Dk is a scaling matrix and A^ is the trust-region radius. Han, Han and Sun [13]
presented a different kind of the conic trust region method for unconstrained optimiza-
tion which is self-adjustable between conic model and quadratic model. In fact, since
our assumption (2.38) below implies that the conic model always remains uniformly
bounded over the trust-region, and as this model coincides up to first order with the ob-
jective function, the conic trust-region subproblem fits exactly in the framework of [5].
The conic model methods are the generalization of the quadratic model methods. They
have several advantages. First, if the objective function has strong non-quadratic behav-
ior or its curvature changes severely, the quadratic model methods often produce a poor
prediction of the minimizer of the function. In this case, conic model approximates the
objective function better than a quadratic, because it has more freedom in the model.
Second, the quadratic model does not take into account the information concerning the
function value in the previous iteration which is useful for algorithms. However, the
conic model possesses richer interpolation information and satisfies four interpolation
conditions of the function values and the gradient values at the current and the previous
points. Using these rich interpolation information may improve the performance of the
algorithms. Third, the conic model method has the similar global and local convergence
properties as the quadratic model niethod. Finally, the initial and limited numerical re-
sults provided in [7,13,17] etc. show that the conic model method gives improvement
over the quadratic model method. For example, in [7] we reported the detailed numerical
results on 19 standard test functions described in [16] and compared our algorithm with
SUMSL algorithm (see [10]). The experiment indicates that the perfonnance of our
algorithm is satisfactory and potentially competitive. In [13], an eigensolution-based
method under the framework of conic trust-region with self-adjust strategy is presented.
The elementary numerical result and some comparisons with the Newton's method and
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quasi-Newton method show that the values of the objective functions of this class of
methods descend faster than other methods. In [17] a derivative-free method under the
framework of conic trust-region is considered. The numerical results of some middle-
scale problems also show that this class of methods is competitive.

In this paper we like to study the combination of trust-region techniques and conic
model methods for optimization problem with equality constraints (1.1), (1.2). The aim
of this paper is to discuss how to construct the conic trust-region subproblem and present
a conic trust-region algorithm, and how to establish global convergence of the conic
trust-region method in the non-linear constrained case. In this work, for the linearized
constraints, we apply the null-space techniques, which have been used for line search
type algorithms (see [9]) and trust-region algorithms (for example, see [3]). By using
null-space techniques, we can rewrite the trust-region subproblems for constrained prob-
lems as subproblems for unconstrained problems, which can be solved easily (see [7]).

Throughout this paper, we use || • || for the 2-norm.
The organization of this paper is as follows. In the following section, the derivation

of our method and a description of our algorithm are presented. The global convergence
properties are studied in section 3. A short discussion is given in section 4.

2. The algorithm

The trial step of a trust-region algorithm is usually obtained by solving a trust-region
subproblem. Because of the nice theoretical properties and performance of the sequential
quadratic programming methods, it is natural to consider the subproblem that is similar
to the subproblem (1.4), (1.5). In this paper we study the extension where the quadratic
objective function in (1.4) is replaced by a conic function (1.7). To construct a trust-
region subproblem, we must have a trust-region bound constraint:

ll̂ ll ^ A,, (2.1)

where A* > 0 is the trust-region radius at the kth iteration. It is easy to see that there
is a possibility that the linearized constraints (1.5) may have no solutions in the trust-
region (2.1). To overcome this difficulty, we use a relaxed version of the linearized
constraint as Byrd, Schnabel and Schultz [3] proposed. That is, at the k\h iteration, the
trial step Sk is computed by solving the following conic model trust-region subproblem

S.t. AJS + 6kCk = 0, (2.3)

ll̂ ll ^ Ak, (2.4)

where Bk denotes a symmetric approximation to the Hessian of the Lagrangian of prob-
lem (1.1), (1.2), 6k € (0, 1] is a relaxation parameter and hk € E" is a horizontal vector.
6k is so chosen that the feasible set of (2.3) and (2.4) is not empty. Geometrically speak-



CONIC TRUST-REGION METHOD 179

ing, the role of 6k is to compress the feasible area of each constraints of (1.5) to the
direction of origin (for example, see Omojokun [19], Zhang and Zhu [34]).

Assume that Ak has full column rank, and there exist an orthogonal matrix Qk and
a nonsingular upper triangular matrix Rk such that

=^Qi'^Ri''. (2.5)

The above relation implies that (2.3) can be rewritten as

KViGk')''^ = -QkCk. (2.6)

Therefore the feasible point for (2.3) can be presented by

Ti'^Yf'u (2.7)
for any u € R""*", since g f «̂ lies in the null space of Aj.

In order to ensure that 5 lies in the trust-region, we choose 6k so that the norm of
the first term of the right-hand side of (2.7) is at most r A^, where T € (0,1) is a given
constant. Using the notation

bk = -Q'^\R'i^Yck, (2.8)

we can let

r ^ l (2.9)
' WbkWJ

which is the largest number 9 in (0, 1] satisfying
Define

^' '' 2. (2.10)

The above definition and our choice of 6k imply that A^ ^ V l — r^A^ > 0. Now, the
subproblem (2.2)-(2.4) can be written to

min gjw -\—iv^BkW (2.11)

s.t. w = ^^^* "*" ^'' " , , (2.12)
" y\{2} \

+ Qt «)
ll"ll < Ak. (2.13)

One can see that lo is a collinear scaling of s, with
C 111

(2.14)
h^

Equality (2.12) indicates the relationship between the scaling variable w and the reduced
variable M, which is similar to the subproblem (49) for unconstrained optimization in [7]
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with the reduced variable u instead ofthe variable d. Therefore problem (2.11)-(2.13)
can be solved by the technique given by Di and Sun [7].

There are several mathematically equivalent reformulations of the conic trust-
region method. These different reformulations, with different matrix factorizations, lead
to different reduced subproblems which are worthy of study in numerical optimization.
For example, by means of coUinear scaling (2.14), we can directly rewrite (2.2)-(2.4) as

(2.15)

(2.16)

(2.17)

(2.18)

where

Ak = Ak -{- OkhkcJ, (2.19)

which is a rank-one modification of Ak. If Ak has full column rank, there exist orthogo-
nal matrix Qk and nonsingular upper triangular matrix Rk such that

min

s.t.

gju

M

M

w

1

= —dkC

w
+ hlw

'. Ak,

l , (2.20)

The above relation implies that (2.16) can be rewritten as

{Rn\Q'n'^ = -^'^Ck. (2.21)
Therefore the feasible point for (2.16) can be presented by

i'^i'Y^ -\- Q^^z = Okbk + e f z (2.22)

for any z 6 R""*", where bk = - ' e r ' ( ^ i " ) "^c t . Therefore subproblem (2.15)-(2.18)
can be further rewritten as the following reduced subproblem

min gjz -\- \z^BkZ (2.23)

s.t. ||5|| < At, (2.24)

._ ekbk + QTz

l + ekhJbk + hjQfV ^^ ^

where

gk = i e f y (̂ it + Ok Bkbk) (2.26)

and

( f y f (2.27)
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Here (2.25) indicates the relationship between the variable s and the reduced scaling
variable z.

It should be pointed out that, in subproblem (2.23)-(2.25) for z, we use the decom-
position (2.20), where ^ f 2̂ is the component in the null space of AJ = (Ak+OkhkcJ)''';
in subproblem (2.11)-(2.13) for u, we use the decomposition (2.5), where Q\ u is the
component in the null space of Aj. Since our aim in this paper is to present the conic
trust-region subproblem for solving equality constrained optimization and establish its
convergence properties, we will not pursue this line about several reformulations of the
problem and their numerical comparison.

By the way, in computations we only require the decomposition for Ak or Ak. In
fact, the decomposition of Ak can be easily obtained from that of Ak since they are
related by a rank-one update matrix, and vice versa. Details can be found in Golub and
Van Loan [12], Gill, Murray and Wright [11] or He and Sun [15].

The merit function we apply is the Lj exact penalty function

cpix) = fix)+a\\cix)\\^, (2.28)

where CT > 0 is a penalty parameter. As pointed out by Coleman and Conn [4], this
function has the advantage that, for cr sufficiently large, any strong local minimizer of
(1.1), (1.2) is a local minimizer of (/)(J:). It is found that this function is very convenient
to be used as a merit function to force global convergence in line search type algorithms
(for example, see [14]). Other merit functions include the Loo exact penalty function
[32] and Fletcher's differentiable exact penalty function [23].

We define the actual reduction in the merit function by

Aredi = f(Xk) - f(Xk + Sk) + OkiWckh - \\ck + Ajsk\\^), (2.29)

where Sk is a trial step computed by the algorithm at Xk and cr̂  is a penalty parameter in
the current iteration. Correspondingly, the predicted reduction is defined as

We choose

Uk = C7k-i (2.31)

if

fkiO) - MSk) > - ^ ( l l c . l l i - \\ck + Ajskl), (2.32)

otherwise we let

CTt = max 2(rk-i, —— T- • (2.33)

Therefore the following inequality

^ - \ \ c k + Ajsk\\,) (2.34)
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holds for all k. The ratio of the actual reduction and the predicted reduction is

which plays an important role in choosing the next iterate point and updating the new
trust-region. For a given constant fi e [0, 1), if Pk > fi, the step Sk is accepted; other-
wise, it is rejected and we reduce the trust-region radius and compute a new trial step 5 .̂
The trust-region scheme is essentially similar to Conn, Could and Toint [5], Powell [20],
Powell and Yuan [23], Di and Sun [7], Yuan and Sun [33] and Yuan [31].

In the following, we give a description of our algorithm.

Algorithm 2.1 (Conic trust-region algorithm for nonlinearly constrained optimization).

Step 0. Input data to be given are starting point xi eW, Bi e R"''", Ai > 0, CTO > 0,
T > 0, and £ > 0. Choose fi € [0, 1), TJ e (/x, 1), 0 < f i < 1 < ^2- Choose
hi eW. Set it = 1.

Step 1. Compute f(Xk), gk and Qk, Rk-
If UQf^VgkW < e and \\Ck\\ < e, stop.

Step 2. Compute bk from (2.8). Compute Ok from (2.9).

Step 3. Solve (2.11)-(2.13) obtaining M^;
Set Sk = fW

Step 4. Compute CT^ from (2.31)-(2.33) and compute

Pk =

Step 5. Set

, + Sk if Pk>H, (2.36)
t otherwise;

Choose the new trust-region bound satisfying

^ jmax[A,,^2lk*ll] if Pk^m n^-])

[^ill^jtll otherwise.

Step 6. Generate fi^+i; generate hk+i.

Step 7. k:=k+\, go to step 1.

In the algorithm above, instead of our original updating rule, the updating rule
(2.37) is given according to the suggestion of a referee's report and has become more
common. Such a rule guarantees that the trust-region radius remains bounded above
since, as convergence occurs, Sk -^ 0. Note that this is useful in the convergence analysis
below because lemmas 3.2 and 3.4, theorems 3.5 and 3.6 all require the trust-region
radius to be uniformly bounded.
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How to choose the scaling vector hk is one of the key issues of a conic model
method. In general, hk+i and Bk+i are so chosen that certain generalized quasi-Newton
equations are satisfied, which means that the conic model function interpolates both the
function values and the gradient values of the objective function atXk andxk+i. In [7,13],
we have given some choices of hk. More details on several updating formulae for hk+i
and Bk+i can be found, for example, in Davidon [6], Sorensen [26], Ariyawansa [1], Di
and Sun [7] and Han, Han and Sun [13]. In this paper, we do not study any specific
updating formulae for hk+i and Bk+i- Instead, we assume that they are generalized
by some interpolating conditions. The conditions that we assume for proving global
convergence are that the matrices Bk are uniformly bounded and

352 € (0, 1): \\hk\\Ak < 82, (2.38)

which ensures that the conic model function ifk(s) is bounded over the trust-region
{s I ||5|| < A^}. We would like to reiterate the fact that our algorithm reduces to a
quadratic model based algorithm if hk = 0 for all k. Note that, under the smooth-
ness assumptions taken in this paper, the objective function is locally convex quadratic
around a local minimizer. It means that choosing /i^ ~ 0 asymptotically is suitable when
Xk is near the minimizer. This strategy has been employed in [7,13].

3. Global convei^ence

In this section, we establish the convergence results of our algorithm given in the previ-
ous section.

First we have the following lemmas:

Lemma 3.1. If [(AjAk)~^] is uniformly bounded, then there exists a positive con-
stant Si such that

i ) (3.1)
for all k.

Proof. The boundedness of { ( A J A ^ ) " ' } implies that {||(i?i")~Ml} is also uniformly
bounded. Therefore there exists a positive constant Si such that ||(/?;['')~Ml ^ ^l for
all k. Hence the lemma follows from the definitions of 6k and bk in (2.8) and (2.9)
respectively, where Q^^ is orthogonal in columns. D

Lemma 3.2. LetSk be the solution of the subproblem (2.2)-<2.4). If {J:*} and
are uniformly bounded, and if the quantities ||/z/t|| A^ are bounded above by a constant
2̂ e (0,1), then there exist positive constants ^3 and 4̂ such that
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( ) [ |c||] (3.2)

for all k.

Proof. Define

f i f y (3.3)
where Oj^ is defined in (2.9). Then we can see that Skit) is feasible of (2.3), (2.4) for all
t € [0, Ak/\\(Qf^)'^gk\\]. Therefore, from the definitions of ŝ  and Skit), we have that

i^k(0) - ifk(Sk) > irk(0) - irkisk(t)) (3.4)

for all t € [0, Ak/WiQ'^k^VgkWl Using hjskit) < \\hk\\Ak < 82 < h Cauchy-Schwartz
inequality and ||!2^ II = 1, we get

1 -52 1+^2

+ A,)
(1 - 52)' 2(1 - 52)2

1-52 (1 - 52)2

, \\m?fgk\? .
L 1 + 552 2(1-52)2 J

for all t e [0, A^/IKef Vgi| |] . By calculus and (2.10), we have that

f 1+^2 2(1-52)2 j .

KQf'fgkf r A, (1-52)2

2(1+52) ii J " 2(1+5
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Hence it follows from (3.4), (3.5) and (3.6) that

max \irkiG) - ifk{skit))\
A / | | ( 2 ® ) T | |

^

The boundedness of Xk, the rule (2.37) and inequality (3.1) imply that 0it||Z>;t|| + A^
and WgkW are bounded above uniformly. This observation and inequality (3.7) show that
there exist^ositive constants ^3 and 4̂ such that (3.2) holds for all k. For instance, if
^ b + Ak<,Ki and WgkW ^ ^2 for all sufficiently large k, the values

1-52 , „ min(A<:i,2/C2)min(r, 5i)

are acceptable. D

Lemma 3.3. If {(>ijAjt)~'} is uniformly bounded, there exists a positive constant 55
such that

(3.8)

Proof. If WbkW < TAi, we have that Ok = 1. Then if follows from (2.7), (2.8) that

l|c;tlli - Ick-hAjskW, = lie,111 - \\ck + Ajbk\\, = WckWi > WckW- (3.9)

If 11̂7,11 > T Ai, we have, by first using (2.7)-(2.9) and then (2.8) and (2.5), that

Thus, the lemma follows from the inequalities (3.9), (3.10). D

Using the above three lemmas, we can show that Ok is bounded above.

Lemma 3.4. lf{xk}, {115*11} and {(A^A*)"'} are uniformly bounded and if the quantities
llftjfcll At are bounded above by a constant 2̂ e (0, 1), then there exists an integer k* such
that

ak = Ok' (3.11)
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Proof. If the lemma is not true, there exists a subsequence {xk^} such that

lim Oki = 0 0 , (3.12)
i-voo

and using (2.32)

fkM - fkMi) < -^^*.(llc*, 111 - | |Q. + 4 ^ , , IJ) (3.13)

for all i. The above inequality and lemma 3.3 imply that

i { | c ; t , . | | , A*,}. (3.14)

Now, the inequality (3.14) and lemma 3.2 give that

^ < 5 4 ( l + l|fi*,ll). (3.15)

Then (3.15) and (3.12) contradict the boundedness of \\Bk\\. Therefore, the lemma is
true. n

Theorem 3.5. Under the conditions of lemma 3.4,

lim llQ 11 = 0. (3.16)
k-^oo

Proof. If the theorem is not true, there exists a constant 6̂ > 0 such that

<56>0. (3.17)

Let ̂ be an accumulation point of [x^] satisfying ||c(^)|| = ^6. There exists a positive
constant 7̂ such that

\\c(x)\\^S6/2 forall||;c-3^1^57. (3.18)

Define the set

K(S) = {k I \\ck\\ ^ S}. (3.19)

Then, using (2.34) and lemma 3.3, for sufficiently large k e Ki&^/A) we have

1 II T II 1 •
Predi ^ -cri(||Ci||i - Ct-|-i4^5i ,) ^ -0-^55 min[||ci||, A J/ z

^ — 5s<7t min —, At . ^3.20^
2 4 v-' " /

Define

f I Ared.. 1
(3.21)
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The boundedness of {xk} and the previous lemma imply that

< 00, (3.22)

which, together with (3.20) implies that

Ak<oo. (3.23)

Therefore there exists an integer k such that

V - . S,(l^i)

2^ A* < -^ , (3.24)

where 0 < ^i < 1 is defined in algorithm 2.1. Because ? i s an accumulation point of
[xk], there exists k > k such that

\\x-,-x\\<^-^. , (3.25)

By induction, we can use inequalities (3.18), (3.24) and (3.25) to prove that

(3.26)

for all it > ^. For fe = ik, (3.26) follows from (3.25) and (3.18). Now assume that (3.26)
is true for aWk = k,..., i, we need to show that it is also true for ^ = f + 1 . From (3.24)
and the updating rule of algorithm 2.1 that A^+i ^ | i At for all k ^ KQ, we have that

j=k J=k, JGKQ j=k, j

Therefore

\\xi+i - 1t\\ < |jcf - jc"! + ^ Â - ^ y . (3.28)
j=k

Thus, it follows from (3.18) and (3.19) that

(3.29)

By induction, we see that (3.26) holds for all k'^ k.
Now from (3.26) and (3.27), by setting i -^ oo, we can see that

A* < - , (3.30)
k=k
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which implies

lim Xk = x", lim A* = 0. (3.31)
k-nx> k->-oo

It can be seen that

Aitdk = Pvedk + o{\\Sk\\) = Pred* + o( A*) (3.32)

which, together with (3.31) and (3.20), gives

Aredt
lim Pk = Um —-f- = 1. (3.33)

The above limit shows that A^+i ^ A^ for all sufficiently large k, which contra-
dicts (3.31). This completes our proof. D

Theorem 3.6. Under the conditions of lemma 3.4,

Uminf||(Qfy^,||=O. (3.34)

Proof. Assume that the theorem is false, hence there exists a positive constant 5$ such
that

iM^l (3.35)
for all k. If

54(1 + P,||)||ct|| > s4{QfYgk\\^, (3.36)

then, by using (2.34) and lemma 3.3, we have

-akS5Tmn[Ak, \\ck\\]

If inequality (3.36) fails, the following relation follows from (2.30) and (3.2) that
MO) - Msk) > U,I {Qf^gkI minfAt, "^^fj!^'''] (3.38)

^ L 11̂*11 J
when k is large, because

( )^M£!rf (3.39,
for all large k. Relations (3.37) and (3.38) tell us that there exists a positive constant Sg
such that

(3.40)
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for all large k. From inequality (3.40), we can derive a contradiction similarly as in the
proof of the previous theorem. This shows that (3.34) holds. D

Remarks.

(1) If the uniform boundedness assumption \\Bk\\ ^ M is replaced by

1=1

where Afi and M2 are positive constants, we can also get the above result in which
the proof is parallel to Powell [20,22] and Yuan [31].

(2) Theorem 3.6 guarantees, under the conditions of lemma 3.4, that the sequence
has limit points and one of them is first-order critical. Along the line of proofs of
theorems 6.4.6 and 15.4.11 of [5], the above result implies that all the limit points
are first-order critical. This means that the stronger result

lim^iQf^ gk = 0 (3.41)

holds.

4. Discussion

We have presented a conic trust-region algorithm for nonlinearly constrained optimiza-
tion. Though the algorithm studied here is only for equality constrained problems, it
can be extended to general inequality constraints. We have established the global con-
vergence of the algorithm. Regarding the local convergence rate, we can prove that the
method is superlinearly convergent if we assume that Xk converges to a second order suf-
ficient point X* and if Bk converges to the Hessian of the Lagrangian at the solution x*
in the following sense

\\iQf^)'^iBk-VLLix*X*))SkW^ (4.1)

which is also said to be projected Dennis-Mor6 condition, where Lix,X.) is the La-
grangian function and A* is the corresponding multiplier at the solution x*. The detailed
discussion about the local convergence rate will be given in a separate paper.

Obviously, the conic trust-region method combines the advantages of both conic
model method and trust-region method. It is a different type of model in a trust-region
framework. We think that conic trust-region method has great potential from both the
theoretical point of view and the numerical point of view (also see [7,13,17,26]). This
class of methods is still in the infancy and a lot of topics and issues wait to be resolved.
Therefore, further research into this class of algorithms, regarding theory and numerical
experiments, is worthwhile.



190 SUN AND YUAN

Finally, we want to mention that it may be interesting to study the more general
trust-region model using the constraints (2.3), (2.4) and with an objective function fkis)
which is a general model function,

min fkis) (4.2)

s.t. AJS -F 6kCk = 0,

Ikll ^ A,

for constrained optimization. It is potentially valuable because such a general approach
will ask us to consider the properties of fkis) that make the trust-region method work.
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