
An example of non-convergence of trust region

algorithms

by

Ya-xiang Yuan

Report No. ICM-96-067 September 1996

An example of non-convergence of trust region

algorithms

Ya-xiang Yuan
State Key Laboratory of Scientific and Engineering Computing

Institute of Computational Mathematics and Scientific/Engineering Computing

Chinese Academy of Sciences, POB 2719, Beijing 100080, China

September 1996

Abstract

It is well known that trust region algorithms have very nice convergence proper-
ties. Trust region algorithms can be classified into two kinds: one requires sufficient
reduction in objective function value (merit function value, in the case of constrained
optimization), the other only needs reduction in objective function value. In general,
it can be shown that the algorithms that require sufficient reductions have strong
convergence result, namely all accumulation points are stationary points. The algo-
rithms that do not require sufficient reductions have the nice properties of accepting
any better iterates, but the convergence result is weak, only one accumulation point
is a stationary point.

In this paper, we construct an example to show that it can happen that for a
class of trust region algorithms that do not require sufficient reductions the whole
sequence need not to converge. In our example, only one accumulation point is a
stationary point while all other accumulation points are non-stationary points.

Key words: nonlinear optimization, trust region algorithms, non-convergence

1. Introduction

Trust region algorithms are relatively new algorithms. The trust region approach is
strongly associated with approximation. Assume we have a current guess of the solution
of the optimization problem, an approximate model can be constructed near the current
point. A solution of the approximate model can be taken as the next iterate point. In
fact, most line search algorithms also solve approximate models to obtain search directions.
However, in a trust region algorithm, the approximate model is only “trusted” in a region
near the current iterate. This seems reasonable, because for general nonlinear functions
local approximate models (such as linear approximation and quadratic approximation)

1

can only fit the original function locally. The region that the approximate model is
trusted is called a trust region, which is normally a neighbourhood centered at the current
iterate. The trust region is adjusted from iteration to iteration. Roughly speaking, if the
computations indicate the approximate model fit the original problem quite well, the trust
region can be enlarged. Otherwise when the approximate model seems to be not good
enough (for example, a solution of the approximate model turns out to be a “bad” point),
the trust region will be reduced.

The key contents of a trust region algorithm are how to compute the trust region trial
step and how to decide whether a trial step should be accepted. An iteration of a trust
region algorithm has the following form. At the beginning of the iteration, a trust region
is available. An approximate model is constructed, and it is solved within the trust region,
giving a solution sk which is called the trial step. A merit function is chosen, which is
used for updating the next trust region and for choosing the new iterate point.

The phenomenon that we are going to reveal is about cycle property of a class of trust
region algorithms. To make the analysis simple, we consider an example of unconstrained
optimization. It can be easily seen that similar examples exist for trust region algorithms
for constrained optimization.

Consider the unconstrained optimization problem:

min
x∈ℜn

f(x) (1.1)

where f(x) is a nonlinear continuous differentiable function in ℜn. The trust region trial
step sk is a solution or an approximate solution of the so called “trust region subproblem”:

min
d∈ℜn

gT

k
d +

1

2
dT Bkd = φk(d) (1.2)

s. t. ||d||2 ≤ ∆k (1.3)

where gk = ∇f(xk) is the gradient at the current approximate solution, Bk is an n × n
symmetric matrix which approximates the Hessian of f(x) and ∆k > 0 is a trust region
radius. Besides the computations of the trial step sk, deciding whether sk can be accepted
is another key issue of a trust region algorithm. After the trial step sk is calculated, The
reduction in the approximate model, that is

Predk = φk(0) − φk(sk), (1.4)

is called the predicted reduction. The actual reduction in the objective function is

Aredk = f(xk) − f(xk + sk). (1.5)

The ratio between the actual reduction and the predicted reduction

rk =
Aredk

Predk

(1.6)

plays an essential role in deciding whether the trial step sk should be accept and in setting
the length of trust region radius for the next iteration.

A general trust region algorithm for unconstrained optimization can be given as fol-
lows.

2

Algorithm 1.1 (Trust Region Algorithm for Unconstrained Optimization)

Step 1 Given x1 ∈ ℜn, ∆1 > 0, ǫ ≥ 0, B1 ∈ ℜn×nsymmetric;
0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0, k := 1.

Step 2 If ||gk||2 ≤ ǫ then stop;
Solve (1.2)-(1.3) giving sk.

Step 3 Compute rk;

xk+1 =

{

xk if rk ≤ τ0 ,
xk + sk otherwise ;

(1.7)

Choose ∆k+1 that satisfies

∆k+1 ∈

{

[τ3||sk||2, τ4∆k] if rk < τ2,
[∆k, τ1∆k] otherwise;

(1.8)

Step 4 Update Bk+1;
k := k + 1; go to Step 2.

The constants τi (i=0,..,4) can be chosen by users. Typical values are τ0 = 0, τ1 =
2, τ2 = τ3 = 0.25, τ4 = 0.5. For other choices of those constants, please see [3], [2], [4], [6],
etc.. The parameter τ0 is usually zero (e.g. [3], [5]) or a small positive constant (e.g. [1]
and [7]).

Convergence results and proofs of the above algorithm are independent of the values
of ci(i = 1, 2, 3, 4). They are also the same for all c0 ∈ (0, 1). However, if c0 = 0,
the proof and result can be obtained will be different. the advantage of using zero τ0

is that a trial step is accepted whenever the objective function is reduced. Hence it
would not throw away a “good point”, which is a desirable property especially when the
function evaluations are very expensive. As pointed by [8], another intuitive argument
for preferring τ0 = 0 is as follows. Consider the case that rk > 0. No matter how small
the ratio rk is, the objective function f(x) has a smaller function value at xk + sk than
at xk. Hence intuitively one would expect that the minimum of the objective function
should be closer to xk + sk than to xk. In other words, it is more likely that the solution
of the original problem is in the half space S1 = {s | ||xk + sk + s|| ≤ ||xk + s||}
instead of S2 = {s | ||xk + s|| ≤ ||xk + sk + s||} (see Picture 1.1). Normally trust region
algorithms reduce the new trust region bound to at most a half of ||sk|| whenever sk is
rejected (xk+1 = xk), Hence for those algorithms that reject sk, the trust region for the
next iteration will be {s | ||xk + s|| ≤ ∆k+1 ≤ ||sk||/2} which is a subset of S2. That
contradicts to our above rough analyses that indicate the solution is more likely in S1.
Hence we believe it is better to set xk+1 = xk + sk in this case, which will enable the next
trust region in S1. That is to say, intuitively it is better to set xk+1 = xk + sk whenever
rk > 0.

3

Picture 1.1

S2 S1

&%
'$

-

&%
'$
�

||xk + s|| ≤ ∆k+1 ||xk + sk + s|| ≤ ∆k+1

But, the price we pay for letting τ0 = 0 is that the global convergence result is only

lim inf
k→∞

||gk||2 = 0 (1.9)

instead of

lim
k→∞

||gk||2 = 0 (1.10)

which can be achieved if τ0 > 0.
The main aim of this paper is to investigate for algorithms with τ = 0 whether the

convergence result (1.9) can be improved. We will construct an example to show that the
sequence {xk} generated satisfies

lim sup
k→∞

||gk||2 > 0. (1.11)

Therefore the result (1.9) can not be further improved. Indeed, in our example, {xk} has
three accumulation point, one of them is a stationary and the two others are not.

In the next section, we give the main idea of constructing the example, and the example
is given in section 3. Finally a short discussion is also given.

2. Idea of Example

In our example, we force the sequence {xk} cycle. From the weakly convergence result
(1.9), at least one of the accumulation point is a stationary point. Denote x̄ is a stationary
accumulation point. We also require the trust region radius cycles. Because we need to
have some accumulation points that are not stationary, at the iterations near those “bad”
accumulation point the predicted reduction will be bounded away from zero. Because the
sequence cycle implies that the sequence {f(xk} will be bounded below, it is easy to see
that the actual reduction Aredk will converge to zero. Therefore at the iterations that
are close to “bad” accumulation points, the ratio between actual reduction and predicted
reduction will converges to zero. Thus the trust region radius have to be reduced at these

4

“bad” iterations. In order to make the trust region radius cycle, the trust region bound
should be increased at iterations near the good accumulation point x̄.

When rk < τ2, some algorithms let ∆k+1 = τ4∆k and some ∆k+1 = τ4||sk||. Fur-
thermore, some algorithms increase the trust region bound only when the rk > τ2 and
||sk|| = ∆k. In order to make our example valid for many algorithms, we force

||sk|| = ∆k (2.1)

for all k. The above relation and the fact that ∆k has to be reduced at iterations near a
“bad” accumulation point indicate that it is not possible for the sequence {xk} cycle near
only two points.

We will construct the example as simple as possible. We consider a one-dimensional
example with three accumulation points: x̄, x̂, x̃. x̄ is a stationary point, but x̂ and x̃ are
not stationary. Let k̄, k̂ = k̄ + 1, and k̃ = k̄ + 2 are the indices of the iterations near x̄,
x̂, and x̃ respectively. k + 1 = k̄ + 3. Our discussions given above imply that

lim
k̂→∞

r
k̂

= 0, lim
k→∞

r
k̃

= 0. (2.2)

Let

lim
k̄→∞

∆k̄ = ∆̄, lim
k̂→∞

∆
k̂

= ∆̂, lim
k̃→∞

∆
k̃

= ∆̃. (2.3)

It follows from the above relations and (2.1)-(2.2) that

∆̄k < ∆̃k < ∆̂k. (2.4)

This inequality shows that

∆k̄+1 > ∆k̄ (2.5)

for all sufficiently large k̄, which requires that

rk̄ > τ2. (2.6)

We let

x̄ = 0, x̂ = −1, x̃ = 2, (2.7)

which, together with (2.1) and (2.3), requires that

∆̄ = 1, ∆̂ = 3, ∆̃ = 2. (2.8)

Many algorithms use positive semi-definite approximate Hessian Bk. Thus it from

f(x
k+1

) < f(x
k̃
) < f(x

k̂
) < f(xk̄) (2.9)

and (2.7) that

∇f(xk̄) > 0, ∇f(x
k̂
) < 0, ∇f(x

k̃
) > 0. (2.10)

5

(2.9) also implies that

f(x̄) = f(x̂) = f(x̃). (2.11)

Thus, we can try the following function

f(x) = x3(x − 2)(x + 1)(x − 1) (2.12)

which satisfies (2.10)-(2.11).

3. The Example

We are trying to see whether the function f(x) defined in (2.12) is what we need. If
cycle happens near the three point 0, −1 and 2, we would have

x3k = ǫk, x3k+1 = −1 − ǭk, x3k+2 = 2 + ǫ̂k, (3.1)

where ǫk, ǭk and ǫ̂k are positive sequences that converge to zero. (3.1) and (2.12) give
that

f(x3k) ≈ 2ǫ3

k
, f(x3k+1) ≈ 6ǭk, f(x3k+2) ≈ 24ǫ̂k. (3.2)

If we set

ǭk = ǫ3

k
/6, ǫ̂k = ǫ3

k
/48 (3.3)

and

ǫk+1 = ǫk/2 . (3.4)

Then we have

f(xk+1) ≈ f(xk)/2 (3.5)

for all k. In order to satisfy (2.1), we require

∆3k = 1 + ǫ3

k
/6 (3.6)

∆3k+1 = 3 + 9ǫ3

k
/48 (3.7)

∆3k+2 = 2 − ǫk + ǫ3

k
/48. (3.8)

Due to (3.5), we can easily see that Aredk > 0 for all k. Therefore we can have xk+1 =
xk + sk for all k. Because the points x̄ = −1 and x̂ = 2 are non-stationary points, the
predicted reductions Pred3k+1 and Pred3k+2 will be bounded away from zero provided the
approximate Hessian Bk are uniformly bounded (which is normally assumed). Therefore
we have

lim
k→∞

r3k+1 = 0, lim
k→∞

r3k+2 = 0 (3.9)

6

Thus, if 2/3 is in the interval (τ3, τ4), ∆3k+2 can be set to the value of (3.8) if ∆3k+1 has
the value of (3.7) when ǫk is very small. Similarly if 1/2 is in the interval (τ3, τ4), ∆3k+3

can be set to the value of (3.6) (with k substituted by k + 1), if ∆3k+1 has the value of
(3.8). In order to set ∆3k+1 by (3.7) when ∆3k is defined by (3.6), we require that

τ1 > 3 (3.10)

and that

r3k > τ2. (3.11)

(3.10) can usually be satisfied as many algorithms allow to increase trust region radius
up to four times at good iterations. Condition (3.11) requires that

Pred3k <
1

τ2

Ared3k ≈
1

2τ2

f(x3k) ≈
1

τ2

ǫ3

k
. (3.12)

However, if B3k is positive semi-definite, we have that

Pred3k ≥ f ′(x3k) ≈ 6x2

3k
= 6ǫ2

k
. (3.13)

We can easily see that either (3.12) or (3.13) is not true when k is large. This shows that
the function f(x) defined at the end of the last section has to be modified.

The only problem with the function f(x) defined by (2.12) is that r3k would converges
to zero. We will let

f(x) = η(x)(x − 2)(x + 1)(x − 1) (3.14)

which is obtained from function (2.12) by replacing the term x3 by η(x). Our modification
is to reduce f ′(x3k) without reducing f(x3k) so that (3.11) will be satisfied. In order to
make our above analyses for (2.12) hold, we need to have

η(x3k) = x3

3k
+ o(x3

3k
) (3.15)

and

η(x3k+1) = x3

3k+1, η(x3k+2) = x3

3k+2. (3.16)

By setting Bk = 0, we have

Pred3k ≈ f ′(x3k) ≈ 2η′(x3k). (3.17)

Since we also have

Ared3k ≈
1

2
f(x3k) ≈ η(x3k), (3.18)

we require that

η(x3k) ≥ 2τ2η
′(x3k) (3.19)

7

for all k where

x3k =
1

2k
x0, k = 1, 2, ..., (3.20)

where x0 ∈ (0, 1). Define the function φ(x) by the

φ(x) = x3/4 + (6x2 − x3/4)sin2(πx/x3k+3) x ∈ [x3k+3, x3k] (3.21)

for all k = 1, 2, ..., we can show that

η(x) =
∫

x

0

φ(y)dy, x ∈ (0, x0), (3.22)

satisfies (3.19) for all k, because we have τ2 ∈ (0, 1) and

η(x3k) = x3

3k
+

1

32
x4

3k
(3.23)

η′(x3k) =
1

4
x3

3k
(3.24)

for all k. Therefore we have made f(x) satisfying the conditions required at the cycle
point 0. Let η(x) = x3 for all x ∈ (−∞, 0) and x ∈ (2,∞), η(x) be defined by (3.22) for
x ∈ (0, x0), and let η(x) be a spline function in (x0, 2) so that it is three times continuous
differetiable. Substitute this η(x) into (3.14), we see that the conditions (3.16) hold.
Therefore the cycle conditions for the points −1 and 2 are satisfied. Thus we have shown
that there exists a required function f(x) which yields (3.1) – (3.4). Our example show
that for some trust region algorithms only the weekly convergence result holds but the
iterate points cycle instead of convergence and furthermore only one cycle point is a
stationary point.

References

[1] I.S. Duff, J. Nocedal, and J.K. Reid, ”The use of linear programming for the solution of
sparse sets of nonlinear equations”, SIAM J. Sci. Stat. Comput. 8(1987) 99-108.

[2] R. Fletcher, “A model algorithm for composite NDO problem”, Math. Prog. Study
17(1982) 67-76. (1982a)

[3] R. Fletcher, Practical Methods of Optimization (second edition) (John Wiley and Sons,
Chichester, 1987)

[4] J.J. Moré, “Recent developments in algorithms and software for trust region methods”,
in: A. Bachem, M. Grötschel and B. Korte, eds., Mathematical Programming: The State
of the Art (Springer-Verlag, Berlin, 1983) pp. 258-287.

[5] M.J.D. Powell, “Convergence properties of a class of minimization algorithms”, in: O.L.
Mangasarian, R.R. Meyer and S.M. Robinson, eds., Nonlinear Programming 2 (Acadmic
Press, New York, 1975) pp. 1-27.

8

[6] M.J.D. Powell, “Nonconvex minimization calculations and the conjugate gradient
method”, in: D.F. Griffiths, ed., Numerical Analysis Lecture Notes in Mathematics 1066
(Springer-Verlag, Berlin, 1984) pp. 122-141.

[7] D.C. Sorensen, “Newton’s method with a model trust region modification”, SIAM J.
Numer. Anal. 20(1982) 409-426.

[8] Y. Yuan, Trust Region Algorithms, (unpublished manuscript, 1993).

9

