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Abstract

Recently, important contributions on convergence studies of conjugate gradient
methods have been made by Gilbert and Nocedal [6]. They introduce a “sufficient
descent condition” to establish global convergence results, whereas this condition is
not needed in the convergence analyses of Newton and quasi-Newton methods, [6]
hints that the sufficient descent condition, which was enforced by their two-stage line
search algorithm, may be crucial for ensuring the global convergence of conjugate
gradient methods. This paper shows that the sufficient descent condition is actually
not needed in the convergence analyses of conjugate gradient methods. Consequently,
convergence results on the Fletcher-Reeves-type and Polak-Ribière-type methods are
established in the absence of the sufficient descent condition.

To show the differences between the convergence properties of Fletcher-Reeves-
type and Polak-Ribière-type methods, two examples are constructed, showing that
neither the boundedness of the level set nor the restriction βk ≥ 0 can be relaxed for
the Polak-Ribière-type methods.
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1 Introduction

We consider the global convergence of conjugate gradient methods for the unconstrained
nonlinear optimization problem

min f(x), (1.1)

where f : Rn → R1 is continuously differentiable and its gradient is denoted by g. We
consider only the case where the methods are implemented without regular restarts. The
iterative formula is given by

xk+1 = xk + λkdk, (1.2)

where λk is a step-length, and dk is the search direction defined by

dk =

{

−gk, for k = 1,
−gk + βkdk−1, for k ≥ 2,

(1.3)

where βk is a scalar, and gk denotes g(xk).
The best-known formulas for βk are the following Fletcher-Reeves (FR), Polak-Ribière

(PR), and Hestenes-Stiefel (HS) formulas

βFR
k = ||gk||

2/||gk−1||
2, (1.4)

βPR
k = gT

k (gk − gk−1)/||gk−1||
2, (1.5)

βHS
k = gT

k (gk − gk−1)/d
T
k−1(gk − gk−1), (1.6)

where ‖·‖ denotes the l2−norm. The Fletcher-Reeves [5] method with an exact line search
was proved to be globally convergent on general functions by Zoutendijk [19]. However,
the Polak-Ribière [14] and Hestenes-Stiefel [11] methods with the exact line search are
not globally convergent, see Powell [15]’s counterexample. Conjugate gradient methods
(1.2)-(1.3) with exact line searches satisfy the equality:

−gT
k dk = ‖gk‖

2, (1.7)

which directly implies the sufficient descent condition :

−gT
k dk ≥ c ‖gk‖

2 (1.8)

for some positive constant c > 0. This condition has often been used in the literature to
analyze the global convergence of conjugate gradient methods with inexact line searches.
For instance, Al-Baali [1], Touati-Ahmed and Storey [16], Hu and Storey [12], Gilbert
and Nocedal [6] analyzed the global convergence of algorithms related to the Fletcher-
Reeves method with the strong Wolfe line search. Their convergence analyses used the
sufficient descent condition, which is implied by the strong Wolfe line search and Fletcher-
Reeves-type βk formulas. For algorithms related to the Polak-Ribière methods, Gilbert and
Nocedal [6] investigated wide choices of βk that resulted in globally convergent methods. In
particular, they first gave the global convergence result for the Polak-Ribière-type methods
βk = max{0, βPR

k } with inexact line searches. In order for the sufficient descent condition
to hold, they modified the strong Wolfe line search to the two-stage line search: the first
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stage is to find a point using the strong Wolfe line search, and the second stage is when, at
that point the sufficient descent condition does not hold, more line search iterations will
proceed until a new point satisfying the sufficient descent condition is found. They hinted
that the sufficient descent condition may be crucial for conjugate gradient methods.

It is noted that the sufficient descent condition is not needed in the convergence anal-
yses of Newton and quasi-Newton methods. This motivates us to investigate whether the
sufficient descent condition is necessary, as it seemed to be, for the global convergence of
conjugate gradient methods. In [10], Liu, Han and Yin have proved the global convergence
properties of the Fletcher-Reeves method under weaker conditions than those of [1]. In
[4], Dai and Yuan have proved that the Fletcher-Reeves method using the strong Wolfe
line search is globally convergent as long as each search direction is downhill. In the next
section, we will provide some basic results of general conjugate gradient methods with the
descent condition, instead of the sufficient descent condition. In Section 3, we will estab-
lish the convergence results for the Fletcher-Reeves-type and Polak-Ribière-type methods
without assuming the sufficient descent condition. To show the differences between the
convergence of Fletcher-Reeves-type methods and Polak-Ribière-type methods, two non-
convergence examples are constructed in Section 4 for the Polak-Ribière-type methods,
showing that neither the boundedness of the level set nor the restriction βk ≥ 0 can be
relaxed in some sense. A brief discussion is give in the last section.

2 Results for general conjugate gradient methods

Throughout this section, we assume that every search direction dk satisfies the descent
condition

gT
k dk < 0, (2.1)

for all k ≥ 1.
We make the following basic assumptions on the objective function.

Assumption 2.1 (i) f is bounded below on the level set L = {x| f(x) ≤ f(x1)},
where x1 is the starting point; (ii) In some neighborhood N of L, f is continuously differ-
entiable, and its gradient is Lipschitz continuous; namely, there exists a constant L > 0
such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, for all x, y ∈ N . (2.2)

It should be noted that the boundedness of the level set is not assumed in the above
sssumption, however, this condition is likely to be satisfied by noncoercive functions. See
Auslender [2] for a collection of references in which some important noncoercive optimiza-
tion problems arise.

The step-length λk in (1.2) is computed by carrying out a line search. The Wolfe line
search [17] consists of finding a positive step-length λk such that

f(xk + λkdk) ≤ f(xk) + ρλkg
T
k dk, (2.3)

g(xk + λkdk)
T dk ≥ σgT

k dk, (2.4)
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where 0 < ρ < σ < 1. In order to prove global convergence for the FR method, [1], [6]
and [12] used the strong Wolfe line search, which requires λk to satisfy (2.3) and

|g(xk + λkdk)
T dk| ≤ −σgT

k dk. (2.5)

The following important result was obtained by Zoutendijk [19] and Wolfe [17, 18].

Lemma 2.2 Suppose that Assumption 2.1 holds. Consider any iteration method of the
form (1.2)-(1.3), where dk satisfies (2.1) and λk is obtained by the Wolfe line search. Then

∞
∑

k=1

(gT
k dk)

2

||dk||2
< +∞. (2.6)

The following theorem is a general and positive result for conjugate gradient methods
with the strong Wolfe line search.

Theorem 2.3 Suppose that Assumption 2.1 holds. Consider any method of the form
(1.2)-(1.3) with dk satisfying (2.1) and with the strong Wolfe line search (2.3) and (2.5).
Then either

lim inf
k→∞

‖gk‖ = 0, (2.7)

or

∞
∑

k=1

‖gk‖
4

‖dk‖2
< +∞. (2.8)

Proof. (1.3) indicates that for all k ≥ 2,

dk + gk = βkdk−1. (2.9)

Squaring both sides of (2.9), we obtain

‖dk‖
2 = −‖gk‖

2 − 2gT
k dk + β2

k‖dk−1‖
2. (2.10)

It follows from this relation and (2.1) that

‖dk‖
2 ≥ β2

k‖dk−1‖
2 − ‖gk‖

2. (2.11)

Definition (1.3) implies the following relation

gT
k dk − βkg

T
k dk−1 = −‖gk‖

2, (2.12)

which, with the line search condition (2.5), shows that

|gT
k dk| + σ|βk| |gk−1dk−1| ≥ ‖gk‖

2. (2.13)

The above inequality and the Cauchy-Schwartz inequality yield

(gT
k dk)

2 + β2
k(gT

k−1dk−1)
2 ≥ c1‖gk‖

4, (2.14)
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where c1 = (1 + σ2)−1 is a positive constant. Therefore, it follows from (2.11) and (2.14)
that

(gT
k dk)

2

‖dk‖2
+

(gT
k−1dk−1)

2

‖dk−1‖2
=

1

‖dk‖2

[

(gT
k dk)

2 +
‖dk‖

2

‖dk−1‖2
(gT

k−1dk−1)
2

]

≥
1

‖dk‖2

[

(gT
k dk)

2 + β2
k(gT

k−1dk−1)
2 −

(gT
k−1dk−1)

2

‖dk−1‖2
‖gk‖

2

]

≥
1

‖dk‖2

[

c1‖gk‖
4 −

(gT
k−1dk−1)

2

‖dk−1‖2
‖gk‖

2

]

. (2.15)

If (2.7) is not true, relations (2.15) and (2.6) imply that the following inequality

(gT
k dk)

2

‖dk‖2
+

(gT
k−1dk−1)

2

‖dk−1‖2
≥

c1

2

‖gk‖
4

‖dk‖2
(2.16)

holds for all sufficiently large k. Now inequality (2.8) follows from (2.16) and (2.6).

The following result is a direct corollary of the above theorem.

Corollary 2.4 Suppose that Assumption 2.1 holds. Consider any method of the form
(1.2)-(1.3) with dk satisfying (2.1) and with the strong Wolfe line search (2.3) and (2.5).
If

∞
∑

k=1

‖gk‖
t

‖dk‖2
= +∞, (2.17)

for any t ∈ [0, 4], the method converges in the sense that (2.7) is true.

Proof. If (2.7) is not true, it follows from Theorem 2.3 that

∞
∑

k=1

‖gk‖
4

‖dk‖2
< +∞. (2.18)

Because ‖gk‖ is bounded away from zero, and t ∈ [0, 4], it is easy to see that (2.18)
contradicts (2.17). This shows that the Corollary is true.

If a conjugate gradient method fails to converge, one can easily see from the above
Corollary that the length of the search direction will converge to infinity. Results similar
to Corollary 2.4 can also be established using the Zoutendijk condition and the sufficient
descent condition (1.8). It should be noted that we have not assumed the sufficient descent
condition. Hence our results are powerful tools for our analyses in the next section, where
we will concentrate on proving the global convergence of some conjugate gradient methods
without assuming the sufficient descent condition (1.8). Another point worth mentioning
is that we do not assume the boundedness of the level set.
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3 Global convergence

In this section, we establish some global convergence results for the Fletcher-Reeves-type
and Polak-Ribière-type methods. The general outline of the proofs is that, assuming that

the convergence relation (2.7) does not hold, we can derive that
∑∞

k=1
‖gk‖

2

‖dk‖2 = +∞ or
∑∞

k=1
1

‖dk‖2 = +∞, which with Corollary 2.4 in turn implies that (2.7) holds, giving a

contradiction.
First, we consider the Fletcher-Reeves-type methods of the form (1.2)-(1.3), where βk

is any scalar satisfying

σ|βk| ≤ σ̄βFR
k (3.1)

for all k ≥ 2, where σ is the parameter defined in (2.4) and σ̄ ∈ (0, 1/2] is a constant. In
order to prove its global convergence, Hu and Storey [12] had to restrict the parameter
σ̄ to be strictly less than 1/2 for deriving the sufficient descent condition. The following
result shows that such a restriction can be relaxed while preserving the global convergence.

Theorem 3.1 Suppose that Assumption 2.1 holds. Consider any method of the form
(1.2)-(1.3) with the strong Wolfe line search (2.3) and (2.5), where βk satisfies (3.1) with
σ̄ ∈ (0, 1/2], and

‖gk‖
2

k
∑

j=2

k
∏

i=j

(

βi

βFR
i

)2

≤ c2k, (3.2)

for some constant c2 > 0. Then

lim inf
k→∞

‖gk‖ = 0. (3.3)

Proof. From (1.3), (1.4), (2.5) and (3.1), we deduce that

−gT
k dk

‖gk‖2
= 1 − βk

−gT
k dk−1

‖gk‖2
= 1 −

(

βk

βFR
k

)

−gT
k dk−1

‖gk−1‖2

≤ 1 + |
βk

βFR
k

|
−σgT

k−1dk−1

‖gk−1‖2

≤ 1 + σ̄

(

−gT
k−1dk−1

‖gk−1‖2

)

≤ · · · · · ·

≤
k−2
∑

j=0

σ̄j + σ̄k−1

(

−gT
1 d1

‖g1‖2

)

=
1 − σ̄k

1 − σ̄
<

1

1 − σ̄
. (3.4)

Similarly, we have that

−gT
k dk

‖gk‖2
≥ 1 − σ̄

1 − σ̄k−1

1 − σ̄
> 0, (3.5)
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because σ̄ ≤ 1/2. Thus, dk is a descent direction.
On the other hand, it follows from (2.10) that

‖dk‖
2 ≤ −2gT

k dk + β2
k‖dk−1‖

2. (3.6)

Using (3.6) recursively and observing that d1 = −g1, we get that

‖dk‖
2 ≤ −2gT

k dk − 2
k
∑

j=2

k
∏

i=j

β2
i gT

j−1dj−1

= −2gT
k dk − 2‖gk‖

4

k
∑

j=2

k
∏

i=j

(

βi

βFR
i

)2(

gT
j−1dj−1

‖gj−1‖4

)

. (3.7)

If the theorem is not true, (3.2) holds and there exists a positive constant γ such that

‖gk‖ ≥ γ, ∀k. (3.8)

Thus, it follows from the above inequality, (3.4) and (3.7) that

‖dk‖
2

‖gk‖2
≤

2

1 − σ̄



1 +
‖gk‖

2

γ2

k
∑

j=2

k
∏

i=j

(

βi

βFR
i

)2


 . (3.9)

The above relation and (3.2) imply that

∞
∑

k=1

‖gk‖
2

‖dk‖2
= +∞. (3.10)

This, with Corollary 2.4, implies that lim infk ‖gk‖ = 0. This completes our proof.

The above theorem extends Hu and Storey [12]’s result to the case when σ̄ = 1/2. If
σ̄ ∈ (0, 1/2), we can see from (3.5) that the sufficient descent condition (1.8) holds. If
σ̄ = 1/2, however, we only have that

−gT
k dk

‖gk‖2
≥

1

2k
, (3.11)

which does not imply the sufficient descent condition.
Now we consider methods that are related to the Polak-Ribière and Hestenes-Stiefel

algorithms. We need the following assumption.

Assumption 3.2 The level set L = {x| f(x) ≤ f(x1)} is bounded.

Under Assumptions 2.1 and 3.2, there exists a positive constant γ̄ such that

‖g(x)‖ ≤ γ̄, for all x ∈ L. (3.12)

Denote sk−1 = xk − xk−1 and uk = dk/‖dk‖. In [6], Gilbert and Nocedal introduced
the following property:
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Property (∗). Consider a method of the form (1.2)-(1.3), and suppose that (3.12) and
(3.8) hold. Then we say that the method has Property (∗) if there exist constants b > 1
and λ > 0 such that for all k:

|βk| ≤ b, (3.13)

and

‖sk−1‖ ≤ λ =⇒ |βk| ≤
1

2b
. (3.14)

Let N∗ denote the set of positive integers. For λ > 0 and positive integer ∆ denote

Kλ
k,∆ := {i ∈ N∗ : k ≤ i ≤ k + ∆ − 1, ‖si−1‖ > λ}.

Let |Kλ
k,∆| denote the number of elements of Kλ

k,∆ and let ⌊·⌋ and ⌈·⌉ denote, respectively,
the floor and ceiling operators. The following Lemmas are drawn from [6].

Lemma 3.3 ([6]) Suppose that Assumptions 2.1 and 3.2 hold. Consider any method of
the form (1.2)-(1.3) with a descent direction dk. If at the k-th step βk ≥ 0, then dk 6= 0
and

‖uk − uk−1‖ ≤ 2
‖gk‖

‖dk‖
. (3.15)

Lemma 3.4 ([6]) Suppose that Assumptions 2.1 and 3.2 hold. Consider the method of
(1.2)-(1.3) with any line search satisfying (2.1). Assume that the method has Property (∗)
and that

∞
∑

k=1

1

‖dk‖2
< +∞. (3.16)

Assume also that (3.8) holds. Then there exists λ > 0 such that, for any ∆ ∈ N∗ and any
index k0, there is a greater index k > k0 such that

|Kλ
k,∆| >

∆

2
.

The conditions used in Lemma 3.4 are not the same as those used in [6]. In particular,
the sufficient descent condition (1.8) used in [6] is here replaced by the descent condition
(2.1). Under this weaker condition, we can also establish a similar global convergence
result as that in [6].

The next theorem is a global convergence result of conjugate gradient methods with
the Property (∗). It is applicable, for example, to the Polak-Ribière-type method

βk = max{0, βPR
k }. (3.17)

The proof of the theorem is similar to that in [6].
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Theorem 3.5 Suppose that Assumptions 2.1 and 3.2 hold. Consider the method (1.2)-
(1.3) with the following three properties: (i) βk ≥ 0; (ii) the strong Wolfe line search
conditions (2.3) and (2.5) and the descent condition (2.1) hold for all k; (iii) Property (∗)
holds. Then the method converges in the sense that (3.3) holds.

Proof. We proceed by contradiction, assuming that the theorem is not true. Then
there exists a positive constant γ such that (3.8) holds. Since βk ≥ 0 and dk is a descent
direction, it follows from Lemma 3.3 that

‖uk − uk−1‖ ≤ 2
‖gk‖

‖dk‖
(3.18)

for all k ≥ 2. The above inequality, (3.8) and Theorem 2.3 imply that

∞
∑

k=1

‖uk − uk−1‖
2 ≤

4

γ2

∞
∑

k=1

‖gk‖
4

‖dk‖2
< +∞. (3.19)

For any two indices l, k, with l ≥ k, we can write

xl − xk−1 =
l
∑

i=k

‖si−1‖ui−1

=
l
∑

i=k

‖si−1‖uk−1 +
l
∑

i=k

‖si−1‖(ui−1 − uk−1).

This relation and the fact that ‖uk−1‖ = 1 give

l
∑

i=k

‖si−1‖ ≤ ‖xl − xk−1‖ +
l
∑

i=k

‖si−1‖‖ui−1 − uk−1‖. (3.20)

Since fk decreases with k, we have that {xk} ⊂ L, which together with Assumption 3.2
implies that there exists a positive constant B such that ‖xk‖ ≤ B for all k ≥ 1. Hence

l
∑

i=k

‖si−1‖ ≤ 2B +
l
∑

i=k

‖si−1‖‖ui−1 − uk−1‖. (3.21)

By Corollary 2.4, we can assume that (3.16) holds. Thus the conditions of Lemma 3.4 are
satisfied. Let λ > 0 be given by Lemma 3.4 and define ∆ := ⌈8B/λ⌉. By (3.19), we can
find an index k0 ≥ 1 such that

∑

i≥k0

‖ui − ui−1‖
2 ≤

1

4∆
. (3.22)

With this ∆ and k0, Lemma 3.4 gives an index k ≥ k0 such that

|Kλ
k,∆| >

∆

2
. (3.23)
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Next, for any index i ∈ [k, k + ∆ − 1], by the Cauchy-Schwartz inequality and (3.22),

‖ui − uk−1‖ ≤
i
∑

j=k

‖uj − uj−1‖

≤ (i − k + 1)1/2





i
∑

j=k

‖uj − uj−1‖
2





1/2

≤ ∆1/2

(

1

4∆

)1/2

=
1

2
. (3.24)

Using this relation and (3.23) in (3.21), with l = k + ∆ − 1, we get that

2B ≥
1

2

k+∆−1
∑

i=k

‖si−1‖ >
λ

2
|Kλ

k,∆| >
λ∆

4
. (3.25)

Thus ∆ < 8B/λ, which contradicts the definition of ∆. Therefore, the theorem is true.

4 Non-convergence examples

In the previous section, we have proved two convergence theorems, namely, Theorems 3.1
and 3.5, for the Fletcher-Reeves-type and Polak-Ribière-type methods. Neither of the
theorems needs the line search to satisfy the sufficient descent condition (1.8). In this
section, we will present two non-convergence examples for the Polak-Ribière methods.

It can be seen from Theorem 3.1 that the boundedness of the level set is not required
in analyzing the Fletcher-Reeves-type methods. Therefore the convergence results for the
Fletcher-Reeves-type methods also apply to noncoercive objective functions. In contrast,
we are able to construct an example, as included in the following theorem, to show that
the boundedness of the level set is necessary for the convergence of Polak-Ribière methods
even if line searches are exact. It is easy to see that the theorem is also true for the
Polak-Ribière-type method (3.17).

Theorem 4.1 Consider the Polak-Ribière method (1.2), (1.3) and (1.5) with λk chosen
to be any local minimizer of Φk(λ) = f(xk + λdk), λ > 0. Then there exists a starting
point x1 and a function f(x) satisfying Assumption 2.1 such that, the iterations generated
by the method satisfy for all k ≥ 1,

βPR
k+1 ≥ 0 (4.1)

and

‖gk‖ = 1. (4.2)

Proof. We define

θk =







−π
2
, for k = 0

0, for k = 1
1
6
[1 − (−1

2
)k−1]π, for k ≥ 2 ,

(4.3)
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and consider the gradients and the search directions given by

gk = (−1)k
(

sin θk−1

− cos θk−1

)

(4.4)

and

dk = csc
π

2k

(

cos θk

sin θk

)

, (4.5)

where

csc
π

2k
=

1

sin π
2k

.

It follows that (4.2) holds for all k ≥ 1. In addition, (4.4) and (4.5) clearly satisfy the
equality

gT
k+1dk = 0. (4.6)

Because

|θk − θk−1| =
π

2k
(4.7)

holds for all k ≥ 1, it follows from (1.5), (4.2) and (4.4) that

βPR
k+1 = 1 − gT

k+1gk = 1 + cos(θk − θk−1) = 1 + cos
π

2k
= 2cos2 π

2k+1
. (4.8)

Thus (4.1) also holds for all k ≥ 1. Further, direct calculations show that

−gk+1 + βPR
k+1dk

= (−1)k+1

(

− sin θk

cos θk

)

+ 2cos2 π

2k+1
csc

π

2k

(

cos θk

sin θk

)

= csc
π

2k+1

[

sin
π

(−2)k+1

(

− sin θk

cos θk

)

+ cos
π

2k+1

(

cos θk

sin θk

)

]

= csc
π

2k+1

(

cos(θk + (−1)k+1 π
2k+1

)

sin(θk + (−1)k+1 π
2k+1

)

)

= csc
π

2k+1

(

cos θk+1

sin θk+1

)

= dk+1. (4.9)

This together with d1 = −g1 imply that if the gradients are given by (4.4), then the
Polak-Ribière method will produce the search directions as in (4.5).

Now, we let λk = 1/‖dk‖ and define

xk =
k−1
∑

i=0

(

cos θi

sin θi

)

(4.10)

and

fk = −
k−1
∑

i=0

sin
π

2i . (4.11)
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Then (1.2) holds and since ‖dk‖ = csc π
2k and gT

k dk = −1, (2.3) and (2.5) holds. Because

lim
k→∞

θk =
π

6
(4.12)

and

‖xk+1 − xk‖ = 1, (4.13)

we can see that {xk} has no cluster points and hence that it is easy to construct a function
f satisfying Assumption 2.1 such that for all k ≥ 1,

f(xk) = fk, g(xk) = gk (4.14)

and λk is a local minimizer of Φk(λ). Therefore for the starting point x1 = (0,−1)T and
the function f , the iterations generated by the Polak-Ribière method satisfy (4.1) and
(4.2) for all k ≥ 1.

As opposed to Theorem 3.1, Theorem 3.5 does not allow any negative values of βk.
However, as pointed out in Gilbert and Nocedal [6], the Polak-Ribière method can produce
negative values of βPR

k even for strong convex objective functions. Therefore it is inter-
esting to investigate in what range the restriction βk ≥ 0 in Theorem 3.5 can be relaxed.
After further studies on the n = 2,m = 8 example of Powell [15], we obtain the following
result.

Theorem 4.2 For any given positive constant ε, consider the method (1.2)–(1.3) with

βk = max{βPR
k ,−ε} (4.15)

and with λk chosen to be any local minimizer of Φk(λ) = f(xk + λdk), λ > 0. There exists
a starting point x1 and a function f(x) satisfying Assumptions 2.1 and 3.2 such that, the
sequence of the gradient norms {‖gk‖} generated by the method is bounded away from zero.

Proof. For any positive constant φ ∈ (0, 1), let the steps of the method have the form

s8j+i = ai

(

1
biφ

2j

)

, s8j+4+i = ai

(

−1
biφ

2j+1

)

, j ≥ 0; i = 1, 2, 3, 4; (4.16)

where the numbers {ai; i = 1, 2, 3, 4} are all positive, and consider the values

b1 = −2, b2 =
6 − 2φ − 2φ2

2 + 5φ
, b3 = −φ, b4 = −2.

To satisfy the line search condition

gT
k+1dk = 0, (4.17)

we assume that the gradients have the form














g8j+1 = c1

(

b4φ
2j−1

1

)

; g8j+i = ci

(

−bi−1φ
2j

1

)

, i = 2, 3, 4;

g8j+5 = c1

(

−b4φ
2j+1

1

)

; g8j+4+i = ci

(

bi−1φ
2j+1

1

)

, i = 2, 3, 4,
(4.18)
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where {ci; i = 1, 2, 3, 4} are constants. To ensure the conjugacy condition

sT
k (gk+1 − gk) = 0 (4.19)

for all k ≥ 1, we choose each ci as follows.
{

c1 = 3φ(1 − φ)(5 − φ), c2 = −3(1 + φ)(2 + φ2),

c3 = (1 + φ)(2 − φ)(2 + 5φ), c4 = 2(5 − φ)(1 − φ2).
(4.20)

Because n = 2, relations (4.17) and (4.19) ensure that each dk is produced by the Polak-
Ribière method. In addition, direct calculations show that gT

k sk < 0 holds for all k ≥ 1,
namely, each dk is a descent direction.

Due to symmetry, we can reduce the objective function at every iteration if the follow-
ing relations holds

f(x8j+1) > f(x8j+2) > f(x8j+3) > f(x8j+4) > f(x8j+5). (4.21)

Now, when the first component of x is equal to the first component of xk, where k is
any positive integer, then the values in (4.18) allow the second component of g(x) to be
constant, provided that the first components of the points {x8j+i; i = 1, 2, . . . , 8} are all
different. Thus, the equation

f(xk) − f∗ = (xk)2(gk)2 (4.22)

is satisfied, where f∗ is the limit of fk. Given the limit point x̂1 = limj→∞ x8j+1, we can
compute x8j+i in the following way.

x8j+1 = x̂1 −
∞
∑

k=j

8
∑

i=1

s8k+i =

(

0
hφ2j/(φ − 1)

)

, (4.23)

and

x8j+i+1 = x8j+i + s8j+i, i = 1, 2, ..., 7, (4.24)

where h = a1b1 + a2b2 + a3b3 + a4b4. It follows that expression (4.21) is equivalent to the
inequalities

−c1(a1b1 + a2b2 + a3b3 + a4b4)

> −c2(a1b1φ + a2b2 + a3b3 + a4b4)

> −c3(a1b1φ + a2b2φ + a3b3 + a4b4)

> −c4(a1b1φ + a2b2φ + a3b3φ + a4b4)

> −c1φ(a1b1 + a2b2 + a3b3 + a4b4). (4.25)

These inequalities are consistent because, if

a1 = 10, a2 = 35φ, a3 = 38, a4 = φ, (4.26)

and if φ is small, then the dominant terms of the five lines of (4.25) are 300φ, 270φ, 240φ,
220φ and 300φ respectively. Now, as in Powell [15], we can construct a function satisfying
Assumptions 2.1 and 3.2 such that the gradient conditions (4.18) hold.
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By direct estimations, we can obtain that the dominant terms of {βPR
4j+i; i = 1, 2, 3, 4}

are

−
3

2
φ,

4

25φ2
,

10

9
,

9

4

respectively, when φ is small and when j is large. Therefore for any positive number ε > 0,
we have that βPR

k ≥ −ε for all large j, provided that φ ∈ (0, 1) is sufficiently small. This
completes our proof.

In [3], the above theorem is proved by using a 3-dimensional example, in which line
searches choose the first local minimum in every iteration.

5 Discussions

In this paper we have presented some global convergence results for nonlinear conjugate
gradient methods, where the step-length is computed by the strong Wolfe conditions under
the assumption that all the search directions are descent directions. The sufficient descent
condition (1.8) has not been used in our convergence proofs and we have established
convergence results for Fletcher-Reeves-type and Polak-Ribière-type methods.

We have also provided two examples for which Polak-Ribière-type methods fail to
converge. From these examples, we can see that the Fletcher-Reeves-type methods have
better convergence properties than the Polak-Ribière-type methods, even though the latter
perform better in practice. We believe that the results given in this paper will lead to
a deeper understanding of the behavior of nonlinear conjugate gradient methods with
inexact line searches.

This paper is a combination of two research reports, [7] and [3], where the readers can
find a more extensive discussion on the subject of this paper; see also [8], [9] and [10]. The
analyses of [7] were based on the paper [10]. Some recent advancements can be found in
the papers [8] and [9].
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