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Abstract. In this paper, we consider the truncated conjugate gradient method for minimizing a convex
quadratic function subject to a ball trust region constraint. It is shown that the reduction in the objective
function by the solution obtained by the truncated CG method is at least half of the reduction by the global
minimizer in the trust region.
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1. Introduction

Consider the unconstrained optimization problem

min f(x), 1)
xenn
where f(x) is continuously differentiable. Trust region algorithms for (1) often need to
solve the following subproblem: (TRS)

1
; T 24T
dng;pﬂqb(d) =g d+ 2d Bd 2
subject to

Idll < A, ®)

whereA > 0 is a trust region boundj € R" is the gradient of the objective function
f(x) at the current iterate, ar8l ¢ )W"*" symmetric is an approximation to the Hessian
of f(x). At each iteration of a trust region algorithm, a problem in the form of (2)—(3)
has to be solved exactly or inexactly to obtain a trial step. The trial step, often called as
the trust region step, will either be accepted or rejected after testing some test condition
based on the predicted reduction and the actual reduction of the objective function. For
more details, please see Fletcher [2].

The following lemma is well known (for example, see Gay [3] and More and
Sorensen [4]):
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Lemma 1. A vectord* € %" is a solution of (2)—(3) if and only if there exists > 0
such that

(B+2A*Hd* = —g 4)
and thatB + A*1 is positive semi-definit¢jd*||> < A and
AT(A = [1d*]]2) = 0. (5)
For a give trial stes, the prediction of the objective function is given by
Pred(s) = ¢(0) — ¢(9). (6)

It is shown by Powell [5] that trust region algorithms for (1) is convergent if the trust
region step satisfies

Pred(s) > cllg|l min{A, ||gll/IIBIl} (7

and some other conditions dhare satisfied. It is easy to see that

1 .
$(0) — ¢(d) = Slglmin{A. igll/IBI}- 8

min

deSparg}, [d|<A

Therefore it is quite common that in practice the trial step at each iteration of a trust
region method is computed by solving the trust region subproblem (2)—(3) inexactly.
One way to compute an inexact solution of (2)—(3) was the truncated conjugate gradient
method proposed by Toint [7] and Steihaug [6]. The aim of this paper is to show Bhat if
is positive definite, the function reduction obtained by the truncated conjugate gradient
method is at least half of the reduction obtained by the exact solution.

2. The truncated CG method

The conjugate gradient method for

1
min ¢(d) = g"d + =d" Bd 9)
desin 2
generates a sequence as follows:
Xkl = Xk + akdk, (10)
dkr1 = — 0Ok + Brdk, (11)
wheregk = Vo (xk) = g+ Bxc and
o= —0p0k/dy Bok, Bk = I91ll?/ gkl (12)
with the initial values
x1=0, di=-01=-0. (13)

It can be shown that the conjugate gradient method terminates after at itersttions
(see Fletcher [2]). That is, there exists a intdger n 4- 1 such thag; = 0.
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Lemma 2. For anyk > 1 such thatgx # 0 we have that

k

- —||gk||2 g

7 llgill?

(14)

k

X1 =— Y —o o ”2 Z ajligjl. (15)

i=1

Proof. By definition,d1 = —gi, which shows that (14) holds fdr = 1. Assume it
holds fork = 1, ..., k. If gg, 4 # O, it follows from (11) and (12) that

||g|_(+1||2 ||gk+j_”
Ojpy = —Gipn + ot = + R gl §
Kt 1 llgklI2 k= "Ohes llgklI2 % ||g ||2

i=1

%1 O =g
—l g I? | 5 + = | = —llgeal?) S —.
Fi1l g, 12 2 P el 2fjg 2

Thus, by induction, (14) is true for &ll> 1 provided thatk # O.
From (13), (10) and (14), we have that

k
X1 = ) ajdj = — Z ajllgjl 2”9”2
j=1
k

> g_‘”2 Zaj lgj 12, (17)
i1 191755

which shows that (15) holds.

O

Toint [7] and Steihaug [6] were the first to use the conjugate gradient method to
solve the general trust region subproblem (2)—(3). Even without assuming the positive
definite of B, we can continue the conjugate gradient method providediﬁﬁblk is
positive. If the iteratexx + axdx computed is in the trust region ball, it can be accepted,
and the conjugate gradient iterates can be continued to the next iteration. Whenever
d,I Bd is not positive orxk + akdk is outside the trust region, we can take the longest
step alonglk within the trust region and terminate the calculations.

Algorithm 1. (Truncated Conjugate Gradient Method For Trust Region Subproblem)

Step 0. Giveng € R", B € R"*" symmetric;
Xx1=001=0,d1 =—-g, k=1

Step 1. If ||gk|| = O then sex* = xk and stop;
Computed, Bd; if d] Bd] < 0then go to Step 3;
Calculateay by (12).
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Step 2. If ||Xk + axdk|| > A then go to Step 3;
Setx+1 by (10) andgit1 = gk + akBd;
ComputeBk by (12) and setl;1 by (11);
k:=k+ 1, goto Step 1.

Step 3. Computex; > 0 satisfying||xk + aidk|| = A
Setx* = xx + adk, and Stop.

Letx* be the inexact solution of (2)—(3) obtained by the above truncated CG method
andd* be the exact solution of (2)—(3).tf= 2, Yuan [10] shows that

¢(0) — ¢(X*)

#(0) — ¢(d*) - 2
It was also conjectured by Yuan [10] that (18) is true fomalNumerical tests given by
Chen [1] support this conjecture. Recently Tseng [8] shows that

#(0) — ¢(X*)
#(0) — ¢(d*) -3
The main result of this paper is establishing (18) foma#t 1. Inequality (18) presents

a reason why the Steihaug-Toint CG method works so well in practice.
Letq = maxq;<a ¢(d), we have

(18)

(19)

g — ¢(0) > ¢(0) — ¢(d"), (20)
if B is positive semi-definite. In this case, (18) and the above inequality imply that
a—o
21
q- ¢(d*) - 4 @)

This kind of inequality is also of interests in complexity analysis(for example, see
Ye [9]).

3. Conjugate gradient path

For any given orthogonal matri®, we defineg = QTg, andB = Q"BQ, we can
easily see that the conjugate gradient method applied to

b(@) =g'd+ 507 Bd (22)

will generate the iterateg = QT xk, ok = Q' gk anddx = QT dk. Thus, the conjugate
gradient method is invariant by orthogonal transformation. Since for anygvéi"
and symmetric matrixB, there exists a orthogonal matr@x such thatQ' g is parallel
to the first coordinate direction ar@" BQ is a tridiagonal matrix. Therefore, without
loss of generality, throughout the rest of this paper, we assume that

1
0
g=lal|. (23)
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In the following we define the path given by the conjugate gradient method. For all
k > 1 such thagk # 0, we denote

X(1) = Xk + (t — K) (X1 — Xk), vt e [k, k+1]. (25)
Define
up vy 0 ... 0 0
v, Uz wv2 ... 0 0
0 v uz ... 0 0
Bek=1| . . . . ) s (26)
0O 0 O Uk—1 Uk—1
0O 0 O Vk—1 Uk

which is the submatrix of the firktrows and firsk columns ofB. We assume thd is
positive definite, which implies that aBlk are also positive definite. It is easy to prove
that

Lemma 3. If ]_[:‘:l vi # 0, then

B—l
X1 = —||g||( koel). (27)
And
_ (~Dfegag) L= (28)
Ok+1 = €+1119 Det(By)’
Proof. xy41 is the solution of
dn;g: g'd+ %dT Bd (29)
where
S = Spar{g. Bg, B%g, ..., B*"1g}. (30)

From the facts thag) = | g|le1, B is tridiagonal andy; # 0@ = 1, ...,k — 1), we can
easily see that

S = Sparfey, e, ..., &l. (31)
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It follows from (29)—(31) thatfor = 1, ... ,k

8 g1 =0, (32)
which gives that
&' (g+ BX1) =0 (33)
foralli = 1, ..., k. The above equation and the fact thiat1 € S show the validity
of (27).
From (27), we have that
ki1 = 9+ BXcr1 = —lgllvke] B 'exey. (34)

Fork = 1, we have that

vl

Tp-1
=— B =— . 35
92 = —llgllvie; By "ere2 ezllgllDet(Bl) (35)
If k > 1, because is tridiagonal, we can see that
Tr-1 k—1 k_llvi
B, & = (-1 = 36
e By &= (=1 Det By’ (36)
which, together with (34), gives
ko
= (—1)¥ Hiz v 37
Ok+1 = (=D llgllex+1 Det(By) (37)
It follows from (37) and (35) that relation (28) holds for &l 1.
]
From the above lemma, we can see that
k2
2 2 Iliz1y;
= —== 1 38
lGk+111 = gl (Det(By))2 (38)

Lemma 4. k < n s the integer such that
Ok+1=0 (39)
if and only if thatk is the smallest integer that
v = 0. (40)

Proof. The lemma follows from (37) directly.
o

If gkr1 = O for k < n, we can consider the problem in the subsp&garies,
e, ..., &}. Hence, there is no loss of generality in assuming thag O for alli =
1,..,n—-1
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Lemma 5. Letx(t)(t > 1) is the conjugate gradient path.df #0 (i =1, ...,k — 1),
we have that

k
xt)=—> y®Signe g)e, forallte[lk+1] (41)

i=1
wherey; (t) = 0fort € [1,i] and

1 [t]-1
nO= oo (Z ajllgj 1% + (t = [they gy 12 (42)
i =i

for t € [i, k + 1], where[t] is the largest integer that is not greater thanHere
Signe'g) = 1if &' g > 0, otherwiseSign(e/ gi) = —1.

Proof. By definition

signe’)e = ”g' - (43)
It follows from (25), (14), (15), (10) and the fact thatt) = O fori > t that
X(t) = X[t] + (t — [tDetdpy
gi [t-1
=- Z — Z @jllgjlI? + (t — [theg | —llgpll Z 5
Gill G ||
[t] gi [tl—
= —Z T Za,ng,n + (t = [t g 12
|
[t]
=- Z ”g—an( )
= — — 44
Z o ). (44)
This completes our proof.
o

The following corollaries are useful in our analysis.

Corollary 1. If v; #0( =1, ..., k— 1), then for each given integére [1, k] y; () is
strictly increasing foit € [i, k + 1]. Furthermore, we have that

—xt)'g= y1(t>||g|| (45)

RGIEE Z(V (®)?, (46)

forall t e [1, k 4+ 1]. Thus,—x(t)Tg and ||x(t)|| are strictly monotonically increasing
functions ot in [1, k + 1].
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Proof. The increasing ofy; (t) can be directly shown from (42). (45) and (46) are
consequences of (41).
O

Corollary 2. If vj # 0 (i = 1,...,k — 1), then for each given integére [1, k] the
relation

lgilllyi & — » 1= llglily2®) — »(®] (47)
holds for any twd andt e [i, k + 1].

Proof. (47) follows from (42).

Corollary 3. If vy #0( =1, ...,k — 1), then
x(® " g(x(®) <0, (48)
forallt e [1, k+ 1].

Proof. For anyt € [1, k + 1], there exists an integére [1, k] and a real number
8 € [0, 1] such that

t=ai +(1—a)i +1). (49)
Therefore we have that
gx) = agi + (1 — a)git1. (50)
The above relation and (41) gives that
x)TgX(®) = —anOllgill — (1 — 2)yia® gzl < 0. (51)

This indicates that the corollary holds.

4. Conjugate gradient path of the exact solution of TRS

Itfollows from Lemma 1 that the exact solutidi of the trust region subproblem (2)—(3)
is the minimizer ofp(d) + A*|d||2/2. Thusd* is the end of the conjugate gradient path
if the objective function igp(d) + A*| d||%/2.

For any given. > 0, we consider the conjugate gradient method applied to the
problem

1
min ¢(d, 1) = g'd + =d" (B + A1)d. (52)
denn 2
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Let the iterate points and the gradients generated be denotedbyi = 1,...,n+ 1)
andgi(M)( = 1,...,n+ 1) respectively. We have that (L) = x1 = 0 andgi(X) =
g1 = g. It follows from (28) that

Det(Bx)
A= —— "
Ok+1(2) Det( B 1 A1) Ok+1 (53)
for k > 1. Thus, the conjugate gradient path is now given by
k
X(t,A) = — Zy.(t, 2 Signe'gi)e, forallt e [1, k+ 1], (54)

i=1

wherey;(t, 1) =0fort € [1,i] and

1 [t]—1
nt Y = o (Z aj Mg WP + ¢ = e W g W11 (55)

=

fort e [i,k+1].

i
Lemma 6. For any. > 0andk > 1 such thatgk # 0, we have
—Xkr1(A) g < —Xg419 (56)
Xkt 2 < [ Xkl (57)
Furthermore,
Il < 1kl (58)
if k> 1.

Proof. It follows from (27) that
—xi1 (W) Tg = llgl%e] (B + A1) ter < [Igl%e] B ter = —x0, 10, (59)

which shows that (56) is true.
Again, from (27), we have that

X1 ()12 = llgliel (Bk + A1) ~2er < |Igll%e] B %er = IIxsall?, (60)
which gives (57). Ik > 1, From (38) we have that

_ Det(Bk-1)
gk = ”gk”—Det(Bk_l T N9kl (61)

This completes the proof of the lemma.
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Theorem 1. For any A > 0 andk > 1 such thatgx # 0, there existax € [1,k+ 1)
such that

X1 g = —x(t) g, (62)
and
viti) < yik+1,2), (63)
foralli =2, ...,k
Proof. If k = 1, we have
—X1(M) g = —x2(M) g =a1(1)g' g = T”gi”él (64)
g'(B+xlhg
and
X9 = ~t - Ddg = t - 19 (65)
g'Bg

fort e [1, 2]. Thus, (62) is true fok = 1 if we lett; = 14+ g" Bg/g" (B + A1)g.

For the case whek = 2. If g2 # 0O, if follows from Corollary 1 that there exists
t2 € [1, 3) such that (62) holds. th < 2 theny»(t) = 0 which implies (63). Otherwise,
we have that; € (2, 3). It follows (47) and (58) that

gl

v2(t2) = y2(t2) — y2(2) = Il [y1(t2) — y1(2)]

gl gl
laoll ) =] = —- 3,0 — 112, A

< g H@ @l = 1o r @) =@ v
gl G200

= oo 3,0 — 122, A
gl gy 23 — 722 2]

<123, 0) — 22, 1) = y2(3, 1), (66)

which shows that (63) holds fér= 2.

Now we prove the theorem by induction. we assume that for Jome there exists
tk € [1, k+ 1) such that (62) and (63) hold. ¢k+1 # 0, from the above lemma and the
monotone property of(t)" g, there exists a unique,1 € (t, k 4+ 2) such that

—Xi2(M)'g = —X(tr1) ' . (67)
Relation (47) implies that

vilk+2,0) —yk+11) _ lall
nk+2,2) —yik+1,2) g’

(68)

foralli=1,...,k+ 1.
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On the other hand, ldt = [tx] andM = [tx,1], we have that

1
Viltke1) = 7t + ol ((L +1—tallgl?
I

M—1
+ Y ajllgil* + (e — Myamligu 1 (69)
j=L+1
foralli=1,2, ...,L,and
1 (M1
At =%t + D ajllgil® + (teyr — Myamllgm I? (70)
I .
j=i
fori =L 4+ 1, ..., M. Therefore if follows from the above two relations that

Yi(tk+1) — vi (k) _ llgall
yiltkr) — i) gl

(71)

fori=1,...,L,and
Yi(tke1) — i (k) _ gl
yilk+1) — it gl

fori = L+1,..., M. Therefore, foi = 2, ..., min{M, k} it follows from (62), (63), (71)
and (72) that

(72)

Yi(tk+1) = () + [y (k+1) — yi ()]

<nt + ||||gi_||||[)/l(tk+1) — y1(t)]
I

=yt + ||||gi'||||[yl(k +2,0) —yuk+ 1, 0]
|

g M)l

llgill

<yt +Ink+2,0) —pk+1 0]

<yK+2,1). (73)

=yi(tw) + [Yik+2, 1) —yi(k+1,1)]

The above inequality and the fact thattx1) = O foralli > M imply that

Viltken) < vi(k+2,2) (74)

foralli =2, ..., k.
If tr1 < k+ 1theny1(tks-1) = 0 which shows that

Mkr1(tkr1) < vera(K+2,4). (75)
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Otherwise, we have that, 1 € (K+ 1, k+ 2).

Wet1(tk1) = Mer1(ter1) — Mera(K+1) = ”;'i”l” [11(tki1) — ya(k+1)]
gl gl
< (11t — 1] = ——— [ya(k +2,2) — ya(k+ 1, )]
Nl Gkl Nl Gkl
gl llgk+2 ()|l
= k+2 1) — k+ 1,
Tl fgoo] Lk ) = e )
< Yer1(K+2,0) — 1K+ 1, 0) = prpa(K+ 2, 1). (76)

The inequalities (74)—(76) show that (63) holds wkesreplaced bk+1. By induction,
we see that the theorem is true.
]

Lemma 7. Foranyx > Oandk > 1suchthagy # 0, there exists a uniquec [1, k+1)
such that

IXO = X2, (77)
furthermore
X1 Tg = —xDHTg. (78)
If k > 1the above inequality holds as a strictly inequality.

Proof. From the above theorem, there existig & [1, k + 1) such that (62) and (63)
hold. These two relations gives that

X2 ()1 = 11Xt - (79)

The above inequality holds as a strictly inequalitk it 1. The monotone property of
[Ix(t)|| and inequality (79) indicates that there exisisa(ty, k + 1) such that

IX®I = X1l (80)
Becausé > ti, we have that
—x®HTgz —xtTg=—x1M g (81)
If k > 1, (79) holds as a strictly inequality, which implies tfat tx, consequently we
see that (81) holds as a strictly inequality.

O

Theorem 2. Forany A > 0. g € iR" and any positive definite matr& € """, letd*
be the global solution of the trust region subproblem (2)—(3), ang*dte the solution
obtained by the truncated CG method, then inequality (18) holds.
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Proof. Due to the fact thap(0) = 0, (18) is equivalent to

1
p(X*) < §¢(d*). (82)

Thus we only need to prove the above inequality. Becaliss the exact solution of
(2)-(3), it follows from Lemma 1 that there exists a Lagrange multiplier O such that
d* is the minimizer ofp(d) + %x||d||2. If A =0, thenx* = d*, which implies (82).

Now we assume that > 0. There exists & € [1, n] such thatgx(A) # 0 and

Ok+1(A) = 0. This is easy to see that

d* = Xk 1(1). (83)

From the above lemma, there existssauch that (77) and (78) hold.> 0 implies that
|ld*|| = A, Thus, (83) and (77) show thixk({)| = A. Therefore, by the definition of
the CG pathx(t) we have that

x* = x(@). (84)

Thus, it follows from (48) and (78) that

oo 1.1 . 1+, 1 1., 1
P(x >=§ng +§x<t)Tg<x(t)>s§ng SEQTXk+l()\)=§gTd < S0,

(85)

This completes our proof.

O

We have shown that if the Steihaug-Toint truncated CG method is used to solve the

trust region subproblem (2)—(3), the function reduction is at least half of the maximum
reduction.

Preconditions change the varialdewithout alternating the function valug(d),

therefore it is easy to see our result is independent of preconditioning.
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