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Abstract

The trust region approach has been extended to solving nonlinear constrained
optimization. Most of these extensions consider only equality constraints and require
strong global regularity assumptions. In this paper, a trust region algorithm for solving
general nonlinear programming is presented, which solves an unconstrained piecewise
quadratic trust region subproblem and a quadratic programming trust region sub-
problem at each iteration. A new technique for updating the penalty parameter is
introduced. Under very mild conditions, the global convergence results are proved.
Some local convergence results are also proved. Preliminary numerical results are also
reported.
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1 Introduction

Trust region methods are iterative. As a strategy of globalization, the trust region ap-
proach was introduced into solving unconstrained optimization and proved to be efficient
and robust. An excellent survey was given by Moré(1983). The associated research with
trust region methods for unconstrained optimization can be found in Fletcher(1980), Pow-
ell(1975), Sorensen(1981), Shultz, Schnabel and Byrd(1985), Yuan(1985). The solution of
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the trust region subproblem is still an active studying area, see Stern and Wolkowicz(1995),
Yuan(1997) et al.

Since the 80’s the trust region approach has been extended to solving nonlinear con-
strained optimization. Most of these extensions consider only equality constraints, and
the global convergence theories are based on strong global regularity assumptions, for ex-
ample, see Byrd, Schnabel and Shultz(1987), Vardi(1985), Omojokun(1989), Powell and
Yuan(1991), Dennis, El-Alem and Maciel(1997), Dennis and Vicente(1997). At each it-
eration of an algorithm given by Omojokun(1989), the trial step consists of a normal
direction step and a null space step. Similarly, Dennis, El-Alem and Maciel(1997) consid-
ered the method which replaced the normal component by a quasinormal direction and
developed its global convergence theory. Dennis and Vicente(1997) proved that under suit-
able conditions their method will converge to the second-order optimal point. For general
constrained optimization, Fletcher(1981) proposed a trust region method which is based
on the L1 nonsmooth exact penalty function. Burke and Han(1989), Liu and Yuan(1998)
has extented Fletcher’s approach to other penalty functions. Burke(1992) presented a
general framework for trust region algorithms for constrained problems. Without requir-
ing any regularity assumption, Burke proved that his method converges to the points
which satisfies certain first-order optimality conditions. Similar to Fletcher(1981) and
Burke(1992), Yuan(1995) proposed a new trust region algorithm for solving the optimiza-
tion with equality and inequality constraints. Under mild conditions, Yuan(1995) proved
the global convergence of his algorithm and established local convergence results.

In this paper, we consider the general nonlinear programming problem

min f(x) (1.1)

s.t. ci(x) = 0, i ∈ E, (1.2)

ci(x) ≥ 0, i ∈ I, (1.3)

where f(x), ci(x)(i ∈ E ∪ I) are real valued continuously differentiable functions on <n,
E = {1, 2, · · · ,me} and I = {me+1, · · · ,m} are two index sets with the integers me and m

satisfying m ≥ me ≥ 0. If me = m > 0, (1.1)-(1.3) is the optimization with only equality
constraints.

Successive quadratic programming (SQP) methods are very efficient for solving prob-
lem (1.1)–(1.3), see Han(1977), Powell(1978), Burke and Han(1989), Burke(1989). At each
iteration, the original SQP method, developed by Wilson, Han and Powell, generates a
new approximate to the solution by the procedure

x+ = x + sd, (1.4)
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where x is the current point, d is a search direction which minimizes a quadratic model
subject to linearized constraints and s is the steplength along the direction and is decided
by some line search procedure. Under certain conditions, SQP methods converge super-
linearly. The requisite consistency of the linearized constraints of the QP subproblem,
however, is its serious limitation. In order to handle the inconsistency of the linearized
constraints, Liu and Yuan(1998) presented a modified SQP algorithm which solves an
unconstrained piecewise quadratic subproblem and a quadratic programming subproblem
at each iteration. The algorithm is a natural extension of the original SQP method since
it solves the same subproblems as the original SQP method at the feasible points of the
original problem, and it coincides with the original method when the iterates are suffi-
ciently close to the solution. Moreover, in order to ensure the fast rate convergence, it
seems reasonable to use the second-order information to generate the normal direction,
instead of using the first-order term only (for example, see Burke(1989) and Burke and
Han(1989)). For optimization with only equality constraints, the normal direction and the
null space direction are independent, so the search direction can be computed parallelly
(see Liu(1998)).

In this paper, we present a new trust region algorithm for problem (1.1)-(1.3). The
new algorithm is based on the SQP method of Liu and Yuan(1998). The trial step is
computed by solving an unconstrained piecewise quadratic trust region subproblem and a
quadratic programming trust region subproblem at each iteration. A motivation for using
trust region techniques is that trust region approach is robust and it can applied to ill-
conditioned problems. Our algorithm is similar to Burke(1992) and Yuan(1995), but there
remain fundmental differences. For equality constrained case, our method is also similar
to the null space and range space approach analyzed by Dennis, El-Alem and Maciel(1997)
and Dennis and Vicente(1997). A new technique for updating the penalty parameter is
introduced. Under very mild conditions, the global convergence results are proved. Local
superlinear convergence results are also proved. Preliminary numerical results are also
reported.

This paper is organized as follows. In section 2 we present our algorithm. Some global
convergence results of our algorithm are proved in section 3. The local analyses are given
in section 4. In section 5, we report some preliminary numerical results.

Throughout this paper, we use the following notations: gk = ∇f(xk), ck = c(xk),
∇ck = ∇c(xk), et al.
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2 The algorithm

Define
P (x, µ) = f(x) + µ‖c(x)−‖, (2.1)

where ‖ · ‖ is any norm on <n, µ > 0 is a penalty parameter. It is well known that (2.1)
is an exact penalty function for problem (1.1)-(1.3). If ‖ · ‖ is selected to be the L1 norm,
then (2.1) is the merit function used in Han(1977), Powell(1978).

Suppose that xk is the current iterate. Similar to Liu and Yuan(1998), let

Ik = {i ∈ I : ci(xk) ≤ 0}, (2.2)

Jk = Ik ∪ E, (2.3)

J̄k = {i ∈ I : i /∈ Jk}. (2.4)

In practice, the condition ci(xk) ≤ 0 is relaxed by ci(xk) ≤ ε, where ε is a very small
positive tolerance number. Let ∆k be the current trust region radius and Bk be the actual
or approximate Hessian of Lagrangian

L(x, λ) = f(x) + λT c(x) (2.5)

at xk, where λ ∈ <m is a multiplier vector. Firstly we solve an unconstrained trust region
subproblem

min ψk(d) =
1
2
dT Bkd + µk‖(cJk

+∇cT
Jk

d)−‖ (2.6)

s.t. ‖d‖2 ≤ δ∆k, (2.7)

where 0 < δ < 1 is a constant, and the norm used in (2.6) is the same as that in (2.1).
For the rest of this paper, if it is not specified, the norm ‖.‖ is also the same as that in
(2.1). The L2 norm in (2.7) can also be replaced by any other norm. If the norm ‖.‖ in in
(2.6) is the L1 or L2 norm, subproblem (2.6)–(2.7) is to minimize a piecewise quadratic
function within a ball.

Suppose that dk1 is a solution of (2.6)-(2.7), we choose τk ≤ 1 close to 1 as much as
possible such that

ci(xk) +∇ci(xk)T (τkdk1) ≥ 0, i ∈ J̄k, (2.8)

where J̄k is defined as (2.4). Then we solve the following quadratic programming trust
region subproblem

min ϕk(d) = gT
k d +

1
2
dT Bkd (2.9)

s.t. ∇ci(xk)T d = 0, i ∈ E (2.10)
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∇ci(xk)T d ≥ 0, i ∈ Ik (2.11)

ĉi(xk) +∇ci(xk)T d ≥ 0, i ∈ J̄k (2.12)

‖d + τkdk1‖2 ≤ ∆k, (2.13)

where gk = ∇f(xk), ĉi(xk) = ci(xk) +∇cikT (τkdk1). Let dk2 be a solution of (2.9)-(2.13),
the trial step of our algorithm is defined by

sk = τkdk1 + dk2. (2.14)

To define the predicted reduction, we use the following function

φk+1(sk) = gT
k sk +

1
2
sT
k Bksk + µk+1‖(ck +∇cT

k sk)−‖, (2.15)

where µk+1 is the updated value of the penalty parameter at the kth iteration. The
predicted reduction is defined by Predk = φk+1(0) − φk+1(sk). The actual reduction of
the penalty funtion (2.1) from xk to xk + sk is

Aredk = P (xk, µk+1)− P (xk + sk, µk+1). (2.16)

Let
rk =

Aredk

Predk
, (2.17)

which plays an important role in accepting or rejecting the trial step and in updating the
next trust region radius.

Now our algorithm is stated as follows.

Algorithm 2.1

Step 0. Given x0 ∈ <n, B0 ∈ <n×n, ∆0 ∈ <+, µ0 ∈ <+ and positive constants δ, ε.
Evaluate f(x0), c(x0), g0, ∇c(x0). Let k = 0;

Step 1. Identify the subscript subsets Ik and Jk by (2.2) and (2.3). Calculate the trial
step sk by solving subproblems (2.6)-(2.7) and (2.9)-(2.13). If ‖sk‖2 ≤ ε, stop;

Step 2. Update the value of the penalty parameter. If

φk(0)− φk(sk) ≥ τk

2
[ψk(0)− ψk(dk1)], (2.18)

let µk+1 = µk. Otherwise, update µk by µk+1 such that µk+1 ≥ 2µk and

φk+1(0)− φk+1(sk) ≥ τk

2
[ψk(0)− ψk(dk1)]; (2.19)
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Step 3. Computing rk by (2.17). If rk > 0, let xk+1 = xk + sk. Otherwise, xk+1 = xk.
The trust region radius ∆k is updated as follows:

∆k+1 =





max{∆k, 2‖sk‖2}, rk ≥ 0.9
∆k, 0.1 ≤ rk < 0.9,

min{1
4∆k,

1
2‖sk‖2}, rk < 0.1;

(2.20)

Step 4. Evaluate f(xk+1), c(xk+1), ∇f(xk+1), ∇c(xk+1). Update Bk. Let k = k + 1
and go to Step 1.

3 Global convergence of the algorithm

In this section, we study the global convergence of the algorithm.

Lemma 3.1 Let γk = ‖(cJk
)−‖ − min‖d‖2≤δ∆k

‖(cJk
+ ∇cT

Jk
d)−‖. If dk1 is a solution of

(2.6)-(2.7), then

ψk(0)− ψk(dk1) ≥ 1
2
µkγk min{1,

µkγk

‖Bk‖2δ2∆2
k

}. (3.1)

Proof. Suppose that ‖d̂k1‖2 ≤ δ∆k and

‖(cJk
+∇cT

Jk
d̂k1)−‖ = min

‖d‖2≤δ∆k

‖(cJk
+∇cT

Jk
d)−‖. (3.2)

If d̂k1 = 0, then γk = 0. Thus, (3.1) holds. Assume that d̂k1 6= 0, then for any 0 < τ ≤ 1,
we have ‖τ d̂k1‖2 ≤ δ∆k and

ψk(dk1) ≤ 1
2
τ2d̂T

k1Bkd̂k1 + µk‖(cJk
+ τ∇cT

Jk
d̂k1)−‖

≤ 1
2
τ2‖Bk‖2‖d̂k1‖2

2 + τµk(‖(cJk
+∇cT

Jk
d̂k1)−‖ − ‖(cJk

)−‖)
+µk‖(cJk

)−‖. (3.3)

Thus, ψk(0)− ψk(dk1) ≥ −1
2τ2‖Bk‖2δ

2∆2
k + τµkγk, ∀0 < τ ≤ 1.

If τ̃k = µkγk

‖Bk‖2δ2∆2
k

< 1, then

ψk(0)− ψk(dk1) ≥ τ̃kµkγk − 1
2
(τ̃k)2‖Bk‖2δ

2∆2
k

≥ 1
2

µ2
kγ

2
k

‖Bk‖2δ2∆2
k

. (3.4)
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Otherwise, µkγk ≥ ‖Bk‖2δ
2∆2

k. Thus we have

ψk(0)− ψk(dk1) ≥ 1
2
µkγk. (3.5)

The result of the lemma follows from (3.4) and (3.5).

In order to prove the global convergence results of the algorithm, we need to make the
following assumptions.

Assumption 3.2 (1) f(x) and c(x) are twice continuously differentiable on <n; (2) {Bk}
is uniformly bounded, i.e. there exists a positive constant M such that ‖Bk‖2 ≤ M for all
positive integer k; (3) {∆k} and {xk} are uniformly bounded.

It should be noted that we do not make positive definiteness assumption on Bk. The
trust region algorithm can circumvent the difficulties of SQP associated with indefinite
Lagrangian Hessian or its approximation. If Bk is the exact Hessian of Lagrangian function
and if the multipliers are bounded, Assumption 3.2(2) is implied by Assumption 3.2(1)
and (3). On the other hand, the assumption on uniformly boundedness of {∆k} is not
strict since in practice it is quite common to use ∆k+1 = min{∆∗, max{∆k, 2‖sk‖2}}
whenever rk ≥ 0.9, where ∆∗ > 0 is a constant.

In the analyses of this section, we do not preassume any regularity of constraints.
Thus, Algorithm 2.1 may converge to some points other than Kuhn-Tucker points. Our
analyses are similar to Burke(1992) and Yuan(1995), and they developed the convergence
theories for their methods without the assumption of regularity.

By our definition, it is easy to see that either µk will remain unchanged for all large k

or limk→∞ µk = ∞. First we have the following result.

Lemma 3.3 Under Assumption 3.2, if limk→∞ µk = ∞, then there exists a finite number
c∗ such that c∗ = limk→∞ ‖(ck)−‖ .

The proof of the above result is nearly the same as that of Lemma 4.2 of Yuan (1995),
and therefore it is omitted. Based on the above result, we have the following lemma:

Lemma 3.4 If limk→∞ µk = ∞ and c∗ 6= 0, then there is a convergent subsequence of
{xk}, its limit x∗ is infeasible for (1.2)-(1.3) and is a stationary point of ‖c(x)−‖, that is,
0 ∈ ∂q(x∗) for q(x) = ‖c(x)−‖.

Proof. Because c∗ 6= 0, any accumulation point of {xk} is an infeasible point of the original
problem (1.1)-(1.3). Let S be the set of all accumulation points of {xk}. Then there must

7



have a x∗ ∈ S, which satisfies

min
d∈<n

‖(c(x∗) +∇c(x∗)T d)−‖ = ‖c(x∗)−‖. (3.6)

Otherwise, for any x ∈ S we have

min
d∈<n

‖(c(x) +∇c(x)T d)−‖ < ‖c(x)−‖. (3.7)

By the convexity of the norm, min‖d‖2≤1 ‖(c(x)+∇c(x)T d)−‖ < ‖c(x)−‖. Thus, it follows
from the continuity of the norm that there is a ω > 0 such that for sufficiently large k,

min
‖d‖2≤1

‖(ck +∇cT
k d)−‖ ≤ ‖(ck)−‖ − ω. (3.8)

Suppose that ‖d̂k‖2 ≤ 1 such that ‖(ck + ∇cT
k d̂k)−‖ = min‖d‖2≤1 ‖(ck + ∇cT

k d)−‖, since
‖(cJk

+∇cT
Jk

d̂k)−‖ ≤ ‖(ck +∇cT
k d̂k)−‖, we have

‖(cJk
+∇cT

Jk
d̂k)−‖ ≤ ‖(cJk

)−‖ − ω. (3.9)

Let tk = min{1, δ∆k}, then ‖tkd̂k‖2 ≤ δ∆k. Thus, for sufficiently large k,

γk ≥ ‖cJk−‖ − ‖(cJk
+∇cT

Jk
(tkd̂k))−‖ ≥ tkω, (3.10)

where γk is defined in Lemma 3.1. Since

φk(0)− φk(sk)− τk

2
(ψk(0)− ψk(dk1))

≥ τk

2
(ψk(0)− ψk(dk1))− gT

k sk − 1
2
sT
k Bksk +

1
2
τkd

T
k1Bkdk1, (3.11)

and by selection of τk, there is a τ0 > 0 such that τk ≥ τ0 for sufficiently large k, it follows
from Assumption 3.2, Lemma 3.1 and µk →∞ that for sufficiently large k,

φk(0)− φk(sk) ≥ τk

2
(ψk(0)− ψk(dk1)). (3.12)

(3.12) contradicts Step 2 of Algorithm 2.1. This contradiction implies that the lemma is
true.

Lemma 3.5 Suppose that limk→∞ µk = ∞ and c∗ = 0. If ‖dk1‖ = O(‖ck−‖), then any
accumulation point of {xk} is a Fritz-John point of the original problem (1.1)-(1.3)(which
is not necessarily a Kuhn-Tucker point of (1.1)-(1.3)).
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Proof. If ‖dk1‖ = O(‖ck−‖), it follows from limk→∞ µk = ∞ that there exists an infinitely
set K such that xk is infeasible for all k ∈ K. Because c∗ = 0, any accumulation point of
{xk : k ∈ K} is feasible for problem (1.1)-(1.3).

If

lim
k→∞

mind∈Ren ‖(ck +∇cT
k d)−‖

‖(ck)−‖ = 1, (3.13)

then for any accumulation point x∗ of {xk}, we have 0 ∈ ∂q(x∗) for q(x∗) = ‖c(x)−‖.
Since x∗ is a feasible point, x∗ is also a Fritz-John point of (1.1)-(1.3).

Suppose the result of the lemma does not hold. Then for sufficiently large k ∈ K, we
have

mind∈<n ‖(ck +∇cT
k d)−‖

‖(ck)−‖ < 1. (3.14)

Let ηk = min{δ∆k, ‖ck−‖}, it follows from the above inequality and the convexity of
‖(ck +∇cT

k d)−‖ that
min‖d‖2≤ηk

‖(ck +∇cT
k d)−‖

‖(ck)−‖ < 1. (3.15)

If d̄k ∈ <n such that

min
‖d‖2≤ηk

‖(ck +∇cT
k d)−‖ = ‖(ck +∇cT

k d̄k)−‖, (3.16)

then for sufficiently large k ∈ K, by (3.11),

φk(sk)− φk(0)− τk

2
(ψk(dk1)− ψk(0)) ≤ τk

2
(ψk(d̄k)− ψk(0)) + O(‖dk1‖). (3.17)

Suppose that {xk : k ∈ K̄}(K̄ ⊆ K) is any convergent subsequence of {xk : k ∈ K}. Then
there must exist a τ0 > 0 such that for sufficiently large k ∈ K̄, τk ≥ τ0. Thus, by (3.15),
for sufficiently large k ∈ K̄,

φk(sk)− φk(0)− τk
2 (ψk(dk1)− ψk(0))

µk‖ck−‖

≤ τ0

2
‖(ck +∇cT

k d̄k)−‖ − ‖(ck)−‖
‖(ck)−‖ + o(1) < 0, (3.18)

which contradicts µk →∞.

Lemma 3.4 and Lemma 3.5 show that if limk→∞ µk = ∞, Algorithm 2.1 may converge
to some points other than Kuhn-Tucker points of (1.1)-(1.3). The next theorem illus-
trates that Algorithm 2.1 can converge to a Kuhn-Tucker point of the original problem if
limk→∞ µk = µ (µ > 0 is a constant).
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We suppose that ‖dk1‖2 → 0 when limk→∞ ‖ck−‖ = 0, that is, the norm of the quasi-
normal component of the trial step closes to zero as iterate closes to the feasible region. It
can be seen that our assumption is weaker than a similar assumption of Dennis, El-Alem
and Maciel(1997) and Dennis and Vicente(1997), where they require that the norm of the
quasi-normal component of the trial step is not more than a fraction of the norm of the
constraint violations.

Theorem 3.6 Suppose that limk→∞ µk = µ (µ > 0 is a constant), {xk : k ∈ K} is a
convergent subsequence of {xk} and x∗ is its limite. If ‖c(x∗)−‖ = 0, and the Mangasarian-
Fromovitz constraint qualification conditions hold at x∗, then x∗ is a Kuhn-Tucker point
of the original problem (1.1)-(1.3).

Proof. Suppose that the theorem is not true. Then we claim that

lim
k→∞,k∈K

∆k+1 = 0. (3.19)

Otherwise, there exists a constant u > 0 such that for sufficient large k ∈ K, we have

∆k ≥ u, rk ≥ 0.1. (3.20)

For sufficient large k ∈ K, there is a τ0 > 0 such that τk ≥ τ0, and µk = µ. Thus, for large
k ∈ K,

Aredk ≥ 0.1Predk ≥ 0.05τ0[ψk(0)− ψk(dk1)] (3.21)

Let d∗ is the solution of the problem

min ϕ̄∗(d) = g(x∗)T d +
1
2
M‖d‖2

2 (3.22)

s.t. ∇ci(x∗)T d = 0, i ∈ E (3.23)

∇ci(x∗)T d ≥ 0, i ∈ I∗ (3.24)

ci(x∗) +∇ci(x∗)T d ≥ 0, i ∈ Ī∗ (3.25)

‖d‖2 ≤ u

2
, (3.26)

where I∗ = {i ∈ I : ci(x∗) = 0}. The supposition that x∗ is not a Kuhn-Tucker point of
the original problem implies that d∗ 6= 0 and ϕ̄∗(d∗) < 0. Thus, by the fact that xk → x∗,
dk1 → 0 and the pertubed lemma of quadratic programming (see Daniel(1973)), we have

ϕ̄k(0)− ϕ̄k(d̄k2) ≥ −1
2
η (3.27)
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for large k ∈ K, where η = ϕ̄∗(d∗), d̄k2 minimizes gT
k d + 1

2M‖d‖2
2 on the feasible region of

the subproblem (2.9)-(2.13). Thus, by

φk(0)− φk(sk) = µk(‖(ck)−‖ − ‖(ck +∇cT
k sk)−‖)− gT

k sk − 1
2
sT
k Bksk

≥ ϕk(0)− ϕk(dk2) + τk[ψk(0)− ψk(dk1)]

−τkd
T
k1(gk + Bkdk2) +

1
2
τk(1− τk)dT

k1Bkdk1 (3.28)

≥ ϕ̄k(0)− ϕ̄k(d̄k2) + τk[ψk(0)− ψk(dk1)] + O(‖dk1‖2),

we have for sufficiently large k ∈ K, Predk ≥ −1
4η. rk ≥ 0.1 implies that

P (xk, µk+1)− P (xk + sk, µk+1) ≥ −0.025η (3.29)

for sufficiently large k ∈ K. Since limk→∞,k∈K P (xk, µk+1) = f(x∗), (3.29) can not hold
for infinitely many k. This contradiction implies that (3.19) holds when the theorem is
not true.

Now we suppose that (3.19) holds. Thus, by (2.20), rk < 0.1 for sufficiently large
k ∈ K and

lim
k→∞,k∈K

sk = 0. (3.30)

If x∗ is not a Kuhn-Tucker point of (1.1)-(1.3), d̃∗ is the solution of the subproblem

min ϕ̄∗(d) = g(x∗)T d +
1
2
M‖d‖2

2 (3.31)

s.t. ∇ci(x∗)T d = 0, i ∈ E (3.32)

∇ci(x∗)T d ≥ 0, i ∈ I∗ (3.33)

ci(x∗) +∇ci(x∗)T d ≥ 0, i ∈ Ī∗ (3.34)

‖d‖2 ≤ 1, (3.35)

then d̃∗ 6= 0, η̃ = ϕ̄∗(d̃∗) < 0, and min{1,∆k}d̃∗ is a feasible solution of the problem

min ϕ̄∗(d) = g(x∗)T d +
1
2
M‖d‖2

2 (3.36)

s.t. ∇ci(x∗)T d = 0, i ∈ E (3.37)

∇ci(x∗)T d ≥ 0, i ∈ I∗ (3.38)

ci(x∗) +∇ci(x∗)T d ≥ 0, i ∈ Ī∗ (3.39)

‖d‖2 ≤ ∆k. (3.40)

Hence, ϕ̄∗(d̃k) ≤ η̃ min{1,∆k}, where d̃k solves the problem (3.36)-(3.40). Therefore, the
quadratic programming pertubation lemma and (3.28) imply that

Predk ≥ −0.25η̃ min{1,∆k}. (3.41)
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If there exists an infinite subset K̃ ⊆ K such that ∆k < 1 for all k ∈ K̃, then

lim
k→∞,k∈K̃

rk = 1, (3.42)

since
|Aredk − Predk| ≤ o(∆k), (3.43)

which contradicts rk < 0.1; Otherwise, ∆k ≥ 1 for all sufficiently large k ∈ K and

Predk ≥ −0.25η̃. (3.44)

By (3.30) and |Aredk − Predk| ≤ o(‖sk‖2), we have rk → 1(k ∈ K, k → ∞), which is
a contradiction with rk < 0.1. Thus, (3.19) is not true. The contradiction proves the
theorem.

4 Local discussion

For analyses of local convergence of the algorithm, we need the following assumption:

Assumption 4.1 (1) xk → x∗, where x∗ is a vector such that ‖c(x∗)−‖ = 0; (2) ∇ci(x∗)(i ∈
E ∪ I∗) are linearly independent; (3) µk = µ for sufficiently large k; (4) {Bk} is bounded
uniformly.

Under Assumption 4.1, Īk ⊃ Īk+1 for sufficiently large k since I is a finite set. Thus,
for sufficiently large k, we have Jk = E∪I∗. dk1 is a solution of the subproblem (2.6)-(2.7),
which implies that

Bkdk1 + µk∇cJk
(xk)λk1 + βk1ηk1 = 0, (4.1)

λk1 ∈ ∂‖y‖|y=(cJk
+∇cT

Jk
dk1)− , (4.2)

βk1 ≥ 0, ηk1 ∈ ∂‖d‖|d=dk1
, (4.3)

βk1(‖dk1‖2 − δ∆k) = 0. (4.4)

Lemma 4.2 Under Assumption 4.1, let K̄ = {k : rk > 0}, then

lim inf
k→∞,k∈K̄

βk1‖dk1‖2 = 0. (4.5)
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Proof. The fact that dk2 is a solution of the subproblem (2.9)-(2.13) implies that dk2

satisfies the constraints (2.10)-(2.13). Thus we have

gk + Bkdk2 −∇ckλk2 + βk2ηk2 = 0, (4.6)

(λk2)i ≥ 0, i ∈ I; (λk2)i∇ci(xk)T dk2 = 0, i ∈ Ik, (4.7)

(λk2)i(ci(xk) +∇ci(xk)T sk) = 0, i ∈ Īk, (4.8)

βk2 ≥ 0, ηk2 ∈ ∂‖d‖|d=sk
, (4.9)

βk2(‖sk‖2 −∆k) = 0. (4.10)

Therefore,
dT

k2Bkdk1 + βk1d
T
k2ηk1 = −µk(∇cT

Jk
dk2)T λk1 ≥ 0. (4.11)

It follows from (4.6) that

gT
k dk2 + dT

k2Bkdk2 −
∑

i∈Īk

(λk2)i∇ci(xk)T dk2 + βk2η
T
k2dk2 = 0. (4.12)

Hence,
1
2
dT

k2Bkdk2 + βk2d
T
k2ηk2 ≥

∑

i∈Īk

(λk2)i∇ci(xk)T dk2. (4.13)

Since limk→∞,k∈K̄ sk = limk→∞,k∈K̄(xk+1−xk) = 0, by (4.8), we have (λk2)i = 0 for i ∈ Īk

and sufficiently large k ∈ K̄.

Now suppose lemma is not true. Then there must exist a set K̃ ∈ K̄ such that
limk→∞,k∈K̃ dk1 = d∗ for some d∗ 6= 0. Without loss of generality, we assume that
limk→∞,k∈K̃ τk = τ∗, limk→∞,k∈K̃ Bk = B∗ and

lim
k→∞,k∈K̃

βk1 = lim inf
k→∞,k∈K̃

βk1 = β∗1 ,

lim
k→∞,k∈K̃

βk2 = lim inf
k→∞,k∈K̃

βk2 = β∗2 .

Then τ∗ > 0 and
lim

k→∞,k∈K̃
dk2 = lim

k→∞,k∈K̃
(sk − τkdk1) = −τ∗d∗. (4.14)

Thus, by (4.11),
−τ∗d∗T B∗d∗ − β∗1‖d∗‖2 ≥ 0, (4.15)

that is, d∗T B∗d∗ ≤ 0. By (4.13), d∗T B∗d∗ ≥ 0. Thus, d∗T B∗d∗ = 0. Using (4.15) we have
β∗1‖d∗‖2 = 0, which completes the proof.

The analyses below show that similar results to Yuan(1995) also hold for our algo-
rithms. Apart from Assumption 4.1, we also need to assume that dk1 → 0(k →∞). Thus,
for all sufficiently large k, τk = 1.
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Lemma 4.3 Under above assumptions, there exists a large integer k0 such that for k ≥ k0,
if (cJk

+∇cT
Jk

dk1)− 6= 0, then

‖dk1‖2 = δ∆k, (4.16)

ψk(0)− ψk(dk1) ≥ δ̂∆k, (4.17)

φk(0)− φk(sk) ≥ 1
4
δ̂∆k, (4.18)

rk → 1, (4.19)

xk+1 = xk + sk, (4.20)

where δ̂ > 0 is a constant.

Proof. Suppose that (dk1, λk1, βk1) satisfies the first-order Kuhn-Tucker conditions of (2.6)-
(2.7). Then we have (4.1), and ‖ηk‖2 = 1, (λk1)i ≤ 0(i ∈ Ik). If (cJk

+∇cT
Jk

dk1)− 6= 0, we
have ‖λk1‖0 = 1, where ‖ · ‖0 is the dual norm of the norm ‖ · ‖.

Let K̂ = {k : (cJk
+ ∇cT

Jk
dk1)− 6= 0}, similar to Lemma 4.2 of Liu(1998), we can

prove that
βk1 = ‖Bkdk1 + µk∇cJk

λk1‖2 ≥ β0 > 0 (4.21)

for k ≥ k0 and k ∈ K̂, where β0 > 0 is a constant and k0 is a large positive integer. Hence,
‖dk1‖2 = δ∆k for k ∈ K̂ and k ≥ k0. Therefore,

lim
k→∞,k∈K̂

∆k =
1
δ

lim
k→∞,k∈K̂

‖dk1‖2 = 0. (4.22)

By using (4.1),
dT

k1Bkdk1 + µk(∇cT
Jk

dk1)T λk1 + βk1‖dk1‖2 = 0, (4.23)

and since

(∇cT
Jk

dk1)T λk1 = (cJk
+∇cT

Jk
dk1)T λk1 − cT

Jk
λk1 (4.24)

≥ ‖(cJk
+∇cT

Jk
dk1)−‖ − ‖(cJk

)−‖, (4.25)

we have
ψk(0)− ψk(dk1) ≥ βk1‖dk1‖2 +

1
2
dT

k1Bkdk1 ≥ δ̂∆k. (4.26)

Thus,

φk(0)− φk(sk) ≥ 1
4
[ψk(0)− ψk(dk1)] ≥ 1

4
δ̂∆k. (4.27)

It follows from rk = 1 + o(‖sk‖2)
Predk

and (4.27) that rk → 1 for sufficiently large k ∈ K̂. By
Algorithm 2.1, xk+1 = xk + sk.
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Lemma 4.4 If the conditions of Lemma 4.3 hold, then for sufficiently large k ∈ K,

ci(xk) +∇ci(xk)T dk1 = 0, i ∈ E, (4.28)

ci(xk) +∇ci(xk)T dk1 ≥ 0, i ∈ Ik. (4.29)

Proof. Let K∗ = {k : (cJk
+∇cT

Jk
dk1)− = 0}, then K∗ must be an infinite set; Otherwise,

for all large k, k ∈ K̂ and Lemma 4.3 holds, so limk→∞∆k = 0 by (4.18), which contradicts
(4.19).

We assume the lemma is not true. Then K̂ is also an infinite set. Suppose that
{ki : i = 1, 2, · · ·} ⊆ K∗, ki + 1 ∈ K̂. If xki+1 = xki

, then by (4.17), for sufficiently large
i,

ψki
(0)− ψki

(dki1) ≥ ψki+1(0)− ψki+1(d(ki+1)1)

≥ δ̂∆ki+1 ≥ 0.25δ̂‖ski
‖2, (4.30)

so
φki

(0)− φki
(ski

) ≥ 0.0625δ̂‖ski
‖2. (4.31)

Moreover, our assumptions and (4.30) imply that limi→∞ ‖ski
‖2 = 0. Thus, rki

→ 1,
which contradicts Algorithm 2.1. Therefore, xki+1 = xki

+ski
for all large i, which implies

(cJki
+1)− = (cJki

+∇cT
Jki

dki1 + O(‖dki1‖2
2))−

= O(‖dki1‖2
2). (4.32)

Hence, for sufficiently large i,

ψki+1(0)− ψki+1(d(ki+1)1) = µ‖(cJki
+1)−‖ − µ‖(cJki

+1 +∇cT
Jki

+1d(ki+1)1)−‖

−1
2
dT

(ki+1)1Bki+1d(ki+1)1

≤ µ‖(cJki
+1)−‖+ O(‖d(ki+1)1‖2

2) = O(∆2
ki+1). (4.33)

It follows from Lemma 4.4 that O(∆2
ki+1) ≥ δ̂∆ki+1, that is, O(∆ki+1) ≥ δ̂, which contra-

dicts (4.22). The contradiction implies that K̂ is just a finite subset.

By Lemma 4.4, under Assumption 4.1, if dk1 → 0(k → ∞), then for sufficiently large
k, any solution of the nonsmooth trust region subproblem (2.6)-(2.7) is also a solution of
the trust region subproblem

min
1
2
dT Bkd (4.34)

s.t. ci(xk) +∇ci(xk)T d = 0, i ∈ E (4.35)

ci(xk) +∇ci(xk)T d ≥ 0, i ∈ Ik (4.36)

‖d‖2 ≤ δ∆k. (4.37)
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The merit function P (x, µ) is nondifferentiable. In order to obtain local superlinear conver-
gence of the algorithm, we generate a second-order correction step by solving the following
problem

min
1
2
dT Bkd + µk‖(cJk

(xk + sk) +∇cJk
(xk)T d)−‖ (4.38)

s.t. ‖d‖2 ≤ δ∆k. (4.39)

Suppose that x∗ is a Kuhn-Tucker point of (1.1)-(1.3). If ‖dk1‖2 < δ∆k and ‖sk‖2 < ∆k

for sufficiently large k, by the discussion of Liu and Yuan(1998), Yuan(1993) and Yuan
and Sun(1997), under suitable local conditions, the Algorithm 2.1 with the second-order
correction technique will converge to its solution superlinearly.

5 Numerical results

A FORTRAN subroutine is programmed to test Algorithm 2.1. All test problems are
taken from Hock and Schittkowski(1981) and the standard initial points are used.

The numerical results derived by running our trust region algorithm are summarized
in Table 1, where ∆0 is the initial trust region radius, n is the number of variables, m is
the number of constraints, NI, NF and NG represent the numbers of iterations, function
and gradient calculations respectively, RT and RC are the `2 norm of the gradients of the
Lagrangian and the constraints respectively.

The choise of the initial radius of the trust region can affect the efficiency of the
algorithm (see Sartenaer(1997)). We tested our algorithm with 1, 5 and 10 three choises of
∆0 respectively and all the results are presented in the table. The other initial parameters
µ0 = 1.0, δ = 0.8 and ε = 10−6. The initial Hessian approximation B0 is taken as the unity
matrix, and it is updated in each iteration similar to Powell’s procedure (see Powell(1982))
and the details can be found in Liu and Yuan(1998).

For simplicity of calculation, the norm in penalty function and the constraints on trust
region are selected to be L∞ norm, and the piecewise trust region subproblems (2.6)-(2.7)
are rewritten into quadratic programming subproblems. It would be better to have an
efficient algorithm to solve the piecewise subproblems directly.

Hock and Schittkowski(1981) provided numerical results for six numerical methods for
solving nonlinear programming and showed that VF02AD, which is based on Han-Powell
SQP method, is superior to other methods. The preliminary numerical results in Table
1 show that our algorithm is comparable to VF02AD. Further computations are needed
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Table 1.

Problem n m ∆0 NI-NF-NG RT RC

HS6 2 1 1.0 9-11-10 1.20E-10 7.59E-09
HS14 2 2 5.0 4-6-5 8.89E-08 2.09E-07
HS22 2 2 5.0 8-13-9 4.38E-08 3.65E-05
HS28 3 1 5.0 8-10-9 9.70E-08 2.22E-16
HS34 3 8 5.0 7-9-8 4.07E-08 1.06E-05
HS38 4 8 1.0 72-88-73 1.66E-05 0.0
HS43 4 3 5.0 14-19-15 1.26E-06 0.0
HS49 5 2 1.0 25-26-26 3.54E-06 4.44E-15
HS50 5 3 1.0 13-14-14 2.77E-07 4.87E-15
HS52 5 3 5.0 12-14-13 1.98E-06 3.17E-15
HS63 3 5 10.0 7-10-8 7.53E-07 7.87E-11
HS76 4 7 1.0 6-7-7 7.29E-08 0.0
HS77 5 2 1.0 11-13-12 8.84E-08 2.30E-12
HS80 5 13 5.0 9-13-10 3.74E-09 2.65E-12
HS83 5 16 1.0 9-12-10 1.12E-06 0.0
HS86 5 15 10.0 5-8-6 1.14E-05 2.65E-06
HS93 6 8 5.0 22-29-23 6.61E-06 4.78E-08
HS100 7 4 5.0 16-26-17 8.99E-06 0.0
HS108 9 14 10.0 12-17-13 1.46E-07 3.65E-06
HS113 10 8 5.0 13-18-14 7.13E-06 1.39E-05
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to study the new algorithm for large scale problems, such as comparing with the famous
LANCOLOT program on the CUTE problems.
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