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Abstract

An extended semi-definite programming, the SDP with an additional quadratic term in the objec-
tive function, is studied. Our generalization is similar to the generalization from linear programming
to quadratic programming. Optimal conditions for this new class of problems are discussed. We
present a potential reduction algorithm for solving QSDP problems. The convergence properties of
this algorithms are also given.
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1 Introduction

In recent years, semi-definite programming (SDP) has attracted much attention from researchers. Many
interesting and important results on SDP have been obtained. The SDP has the following standard form:

min 〈C, X〉 (1.1)
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m, (1.2)

X º 0, (1.3)

where C, Ai ∈ S<n×n, S<n×n being the set of all n × n real symmetric matrices. X º 0 indicates that
X ∈ S<n×n is positive semi-definite. 〈A,B〉 is the inner product of A and B in the space <n×n, namely

〈A,B〉 = tr(AT B), ∀A,B ∈ <n×n. (1.4)

SDP can be viewed as a generalization of linear programming from vector spaces to matrix spaces. Even
though there are nonlinear features in SDP problems since the set of positive semi-definite matrices is
not polyhedral, SDP has exactly the same form as linear programming. Therefore, most interior point
methods for linear programming can be extended to SDP. Indeed, most published works on SDP are
about interior point methods, for example see [1], [2], [3], [8], [11], [12]. The SDP problem (1.1)-(1.3) is
also called as SDPLP by [9]. Recently, there are some studies on extensions of the SDP. One extension is
the semi-definite linear complementarity problems (SDPLCP). For more details on SDPLCP, please see
[6], [7] and [9].

In this paper we consider a new extension of the SDP problems. It is well known that adding a
quadratic term in the objective of a linear programming problem gives a quadratic programming problem.

∗This work is partially supported by Chinese NNSF grants 19731010
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It is natural for us to consider extending the SDP problem by adding a quadratic term in the objective
function (1.1). In quadratic programming, the general quadratic term is 1

2xT Hx, where x ∈ <n. However,
in the matrix space <n×n, not all quadratic terms can be expressed in the form 1

2 〈HX,X〉. Thus, we
consider a quadratic form which can be written as

Q(X) =
1
2
〈ϕ(X), X〉, (1.5)

where ϕ(X) has the form:

ϕ(X) =
∑̀

i=1

HiXWi. (1.6)

Here Hi,Wi(i = 1, . . . , `) are matrices in S<n×n. Throughout this paper, we assume that all Hi and Wi

are positive semi-definite. Consequently, we have:

〈ϕ(X), Y 〉 = 〈X, ϕ(Y )〉, ∀X, Y ∈ <n×n, (1.7)

and
〈ϕ(X), X〉 ≥ 0, ∀X ∈ <n×n. (1.8)

Therefore, we derive the extended problem as follows.

min q(X) = 〈C, X〉+
1
2
〈ϕ(X), X〉 (1.9)

(QSDP ) s. t. 〈Ai, X〉 = bi, i = 1, . . . , m, (1.10)
X º 0, (1.11)

where ϕ(X) has the form (1.6). The dual of the above problem is

max d(X, y) = bT y − 1
2
〈ϕ(X), X〉 (1.12)

(QSDD) s. t.

m∑

i=1

yiAi + S = C + ϕ(X), (1.13)

X, S º 0, (1.14)

where y = (y1, ..., ym)T ∈ <m. The primal feasible region and dual feasible region are

Fp = {X ∈ S<n×n : 〈Ai, X〉 = bi, i = 1, . . . , m, X º 0} (1.15)

and

Fd = {(X, y, S) ∈ S<n×n ×Rm × S<n×n : C + ϕ(X) =
m∑

i=1

yiAi + S,X, S º 0} (1.16)

respectively. In order to guarantee the existence of initial points, we make the following assumption:

Assumption 1.1 (Slater regularity condition): There exist X Â 0, S Â 0 and y ∈ <m such that X ∈ Fp

and (X, y, S) ∈ Fd.

For any pair (X, y, S) ∈ Fd, it follows that

q(X) − d(X, y)

= 〈C,X〉+
1
2
〈ϕ(X), X〉 − bT y +

1
2
〈ϕ(X), X〉

= 〈ϕ(X) + C −
m∑

i=1

yiAi, X〉

= 〈S,X〉 ≥ 0. (1.17)
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Therefore, if we can find a pair (X?, y?, S?) ∈ Fd such that 〈X?, S?〉 = 0, problems (QSDP) and (QSDD)
are solved simultaneously.

This paper is organized as follows. In the next section, some optimal conditions for QSDP are
presented. In section 3, we extend the potential reduction method using the NT direction for solving
QSDP. Section 4 is devoted to the problem how to solve the linear system which is encountered in every
iteration.

2 Optimal conditions

In this section, we study the optimal conditions for QSDP. Our analyses are mainly based on the studies
on the following nonlinear system:

〈Ai, X〉 = bi, i = 1, . . . , m, (2.1)
m∑

i

yiAi + S = C + ϕ(X), (2.2)

XS = µI, X, S Â 0, (2.3)

where µ > 0 is a parameter. The solution of system (2.1)-(2.3) is called the central path for the QSDP.
It is proved in the following that (2.1)-(2.3) has a unique solution for any given µ > 0.

We consider the subproblem:

min fµ(X) = q(X)− µ log det(X) (2.4)
s. t. 〈Ai, X〉 = bi, i = 1, . . . , m, (2.5)

X Â 0. (2.6)

The first-order necessary conditions for the above subproblem are

C + ϕ(X)− µX−1 =
m∑

i=1

yiAi, (2.7)

〈Ai, X〉 = bi, i = 1, . . . , m, (2.8)
X Â 0. (2.9)

Let S = C + ϕ(X) −∑m
i=1 yiAi, then (2.7)-(2.9) are equivalent to (2.1)-(2.3). Therefore, (2.1)-(2.3) is

also the first order conditions for problem (2.4)-(2.6). Thus, we only need to prove that (2.4)-(2.6) has a
unique solution. Direct calculations show that

∇fµ(X) = C + ϕ(X)− µX−1, (2.10)

and

∇2fµ(X)Y =
∑̀

i=1

HiY Wi + µX−1Y X. (2.11)

Recalling the assumption that Hi,Wi º 0 and µ > 0, we have that

〈∇2f (µ)(X)Y, Y 〉 > 0, ∀ 0 6= Y ∈ <n×n. (2.12)

(2.11) and (2.12) imply that fµ(X) is strictly convex in the feasible region.
Because of the Slater regularity condition, there exists a pair (X̄, ȳ, S̄) ∈ F◦d with X̄ ∈ F◦p , where F◦p

and F◦d are the sets of the interior points of Fp and Fd respectively. Now we prove that the level set

Ωµ = {X ∈ S<n×n : fµ(X) ≤ fµ(X̄)} (2.13)
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is compact, which guarantees the existence of the solution. For every X ∈ Ωµ,

q(X)− µ log(det(X)) ≤ f (µ)(X̄). (2.14)

Noting that
∑m

i ȳiAi + S̄ = C + ϕ(X̄), we have

−〈ϕ(X̄), X〉+
1
2
〈ϕ(X), X〉+ 〈S̄, X〉 − µ log det(X) ≤ fµ(X̄)− bT ȳ. (2.15)

The definition of ϕ(X) implies that

1
2
〈ϕ(X), X〉 − 〈ϕ(X̄), X〉 =

1
2
〈ϕ(X − X̄), X − X̄〉 − 1

2
〈ϕ(X̄), X̄〉

≥ −1
2
〈ϕ(X̄), X̄〉. (2.16)

The fact that S̄ Â 0 gives the following inequality

〈S̄, X〉 ≥ λmin(S̄)tr(X). (2.17)

Now it follows from (2.15)-(2.17) that

λmin(S̄)tr(X)− 1
2
〈ϕ(X̄), X̄〉 − µ log(det(X)) ≤ f (µ)(X̄)− bT ȳ. (2.18)

The above inequality implies that tr(X) is bounded, which guarantees ‖X‖ is also bounded. Thus, it is
easy to see that (2.4)-(2.6) has a unique solution for each µ > 0. Consequently (2.1)-(2.3) has a unique
solution, which can be denoted by (X(µ), y(µ), S(µ)).

Lemma 2.1 Assume that A1, . . . , Am are linearly independent and Slater regularity condition holds. For
any given µ̄ > 0, the central path (X(µ), y(µ), S(µ)) (0 < µ < µ̄) is bounded.

Proof Let (X(µ̄), y(µ̄), S(µ̄)) be the interior point, and

C + ϕ(X̄) =
m∑

i

ȳiAi + S̄. (2.19)

By (2.1), it can be seen that

C + ϕ(X(µ)) =
m∑

i=1

ȳ(µ)iAi + S(µ). (2.20)

Combining the above two equalities, we obtain

tr((X(µ)− X̄)(S(µ)− S̄)) = 〈ϕ(X(µ)− X̄), X(µ)− X̄〉 ≥ 0. (2.21)

From (2.3), X(µ)S(µ) = µI, which gives

tr(X(µ)S(µ)) = nµ. (2.22)

So, we can easily prove the inequality

tr(X(µ)S̄) + tr(X̄S(µ)) ≤ nµ̄ + tr(X̄S̄). (2.23)

Using the notation L = nµ̄ + tr(X̄S̄), we can see that, from S̄ Â 0 and X̄ Â 0,

λmin(S̄)tr(X(µ)) + λmin(X̄)tr(S(µ)) ≤ L. (2.24)
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Since S(µ) Â 0 and X(µ) Â 0, the above relation implies

tr(X(µ)) ≤ (λmin(S̄))−1L (2.25)

and
tr(S(µ)) ≤ (λmin(X̄))−1L. (2.26)

From the fact that ‖X‖ ≤ tr(X)(ifX Â 0), we have

‖X(µ)‖ ≤ (λmin(S̄))−1L (2.27)

and
‖S(µ)‖ ≤ (λmin(X̄))−1L. (2.28)

The above two relations indicate that X(µ) and S(µ) are bounded. From the relation

C + ϕ(X(µ)) =
m∑

i=1

y(µ)iAi + S(µ) (2.29)

and the assumption that A1, . . . , Am are linearly independent, it is easy to see that y(µ) = (y(µ)1, . . . , y(µ)m)T

is also bounded. QED
In particular, we define µk = 1

k (k = 1, 2, . . .). It follows from the above lemma that the sequence
(X(µk), y(µk), S(µk)) has a convergent subsequence (X(µnk

), y(µnk
), S(µnk

)). Assume that

lim
k→∞

(X(µnk
), y(µnk

), S(µnk
)) = (X?, y?, S?). (2.30)

Therefore, the limit point (X?, y?, S?) satisfies the following relation

〈Ai, x
?〉 = bi, i = 1, . . . , m, (2.31)∑m

i=1 y?
i Ai + S? = C + ϕ(x?), (2.32)

X?S? = 0, (2.33)
X? º 0, S? º 0. (2.34)

Therefore we know that the limit point X? is the solution.

Theorem 2.2 If A1, . . . , Am are linearly independent, and under the Slater regularity condition, (1.9)-
(1.11) has solutions. Furthermore, ϕ ≥ 0, X? ∈ Fd is an solution to the problem (1.9)-(1.11) if and only
if there exist y? ∈ <m and S? ∈ S<n×n such that S? º 0,

(X?, y?, S?) ∈ Fd; (2.35)

and
X?S? = 0. (2.36)

Proof If X? is a solution, it follows from first order stationary condition and the complementarity
condition that there exist y? ∈ <m and S?(º 0) ∈ S<n×n such that (2.35) and (2.36) hold. On the other
hand, if (2.35)-(2.36) are satisfied, it can be easily seen that for any X ∈ Fd,

q(X)− q(X∗) = 〈C + ϕ(X∗), X −X∗〉+
1
2
〈ϕ(X −X∗), X −X∗〉

≥ 〈C + ϕ(X∗), X −X∗〉 (ϕ ≥ 0)

= 〈C + ϕ(X∗)−
m∑

i=1

y?
i Ai, X −X∗〉

= 〈S∗, X −X∗〉
= 〈S∗, X〉 ≥ 0. (X, S∗ º 0) (2.37)

Thus, X∗ is an optimal solution. QED
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3 The potential reduction algorithm

In this section, we give a potential reduction interior point method that uses the Nesterov-Todd direction
to solve the problem (1.9)-(1.11). Under the Slater regularity condition and the assumption that Hi and
Wi are positive definite, our algorithm is a polynomial-time algorithm.

At the beginning of an iteration, the current iterate (X, y, S) ∈ F◦d , µ = 〈X, S〉/n. The potential
functions we use are the primal

Pn+ρ(X, S) = (n + ρ) log〈X, S〉 − log det X, (3.1)

and the primal-dual
Ψn+ρ(X, S) = Pn+ρ(X, S)− log det S, (3.2)

where ρ > 0 is a parameter. Similar to the Nesterov-Todd direction for SDP, our search direction
(dX, dy, dS) is computed by solving the following system

D−1dXD−1 + dX = R (3.3)
〈Ai, dX〉 = 0, i = 1, . . . , m, (3.4)

ϕ(dX)−
m∑

i=1

(dy)iAi − dS = 0, (3.5)

to generate the new point pair (X+, y+, S+) ∈ F◦d , where D is the so-called scaling matrix:

D = X
1
2 (X

1
2 SX

1
2 )−

1
2 X

1
2 (3.6)

and R = γµX−1 − S. It should be noted that here we do not have the relation 〈dX, dS〉 = 0 as in the
SDP case. Instead, because ϕ is positive semi-definite, it follows from (3.5) that

〈dX, dS〉 = 〈dX, ϕ(dX)〉 ≥ 0. (3.7)

By using the transformations
dX

′
= D− 1

2 dXD− 1
2

dS
′
= D

1
2 dSD

1
2

A
′
i = D

1
2 AiD

1
2

R
′
= D

1
2 RD

1
2

H
′
= D

1
2 HD

1
2

W
′
= D

1
2 WD

1
2

ϕ̄(dX
′
) =

∑`
i=1 H

′
idX

′
W

′
i ,





(3.8)

we can rewrite (3.3)-(3.5) into the following reduced system

dX
′
+ dS

′
= R

′
(3.9)

〈A′
i, dX

′〉 = 0, i = 1, . . . , m, (3.10)

ϕ̄(dX
′
)−

m∑

i=1

(dy)iA
′
i − dS

′
= 0. (3.11)

Denote
V

1
2 = D− 1

2 XD− 1
2 = D

1
2 SD

1
2 Â 0, (3.12)

then relation
〈X, S〉 = 〈I, V 〉 (3.13)
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holds. In our next section, we will discuss the calculations of the scaling matrix D in (3.6) and the NT
direction (dX

′
, dy, dS

′
) in (3.9)-(3.11). Once when (dX

′
, dy, dS

′
) are computed, we let

X+ = X + θdX,

y+ = y + θdy,

S+ = S + θdS,

where θ > 0 is a step-length such that (X+, y+, S+) ∈ F◦d and Ψn+ρ(X+, S+) < Ψn+ρ(X, S). In order
to ensure the above expected property, we need to analyze the reduction in the potential function. Our
analysis is based on several famous inequalities.

Lemma 3.1 Let X ∈ S<n×n, ‖X‖∞ < 1, then the following inequality:

tr(X) ≥ log det(I + X) ≥ tr(X)− 1
2

‖X‖2
1− ‖X‖∞ (3.14)

holds. The norm ‖X‖∞ denotes the maximum absolute of X’s eigenvalues and ‖X‖ = (tr(XT X))
1
2 .

A proof for the above lemma can be found in Ye(1998).

Lemma 3.2 Let the pair (dX, dy, dS) be the solution to system (3.3)-(3.5) with the parameter γ =
n/(n + ρ), µ = 〈X, S〉/n. If the step-length is

θ =
α

‖V − 1
2 ‖∞‖ 〈I,V 〉

n+ρ V − 1
2 − V

1
2 ‖

, (3.15)

where α ∈ (0, 1) is a constant, then we have

(X+, y+, S+) ∈ F◦d , (3.16)

and

Ψn+ρ(X+, S+)−Ψn+ρ(X, S) ≤ −α
‖V − 1

2 − n+ρ
〈I,V 〉V

1
2 ‖

‖V − 1
2 ‖∞

+
α2

2(1− α)
+

1
2
(1 + ρ/n)α2. (3.17)

Proof From the transformations (3.8), it can be seen that

R
′

= γµD
1
2 X−1D

1
2 −D

1
2 SD

1
2

= γµV − 1
2 − V

1
2 ,

and
γµ = 〈I, V 〉/(n + ρ). (3.18)

So we have

D− 1
2 X+D− 1

2 = V
1
2 + θdX

′

D
1
2 S+D

1
2 = V

1
2 + θdS

′
. (3.19)

Because dX
′
+ dS

′
= R

′
and 〈dX

′
, dS

′〉 ≥ 0, it holds that

‖dX
′‖2 = 〈dX

′
, dX

′〉
≤ 〈dX

′
, R

′〉
≤ ‖dX

′‖‖R′‖,
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which implies that
‖dX

′‖ ≤ ‖R′‖. (3.20)

Similarly, ‖dS
′‖ ≤ ‖R′‖. From the choice of θ in (3.15), it is easy to show that

X+, S+ Â 0. (3.21)

Now we consider the reductions in the potential functions.

(n + ρ) log〈X+, S+〉 − (n + ρ) log〈X, S〉 = (n + ρ)[log〈V 1
2 + θdX

′
, V

1
2 + θdS

′〉 − log〈I, V 〉]

= (n + ρ) log(1 +
θ〈V 1

2 , R
′〉+ θ2〈dX

′
, dS

′〉
〈I, V 〉 )

≤ (n + ρ)θ
〈I, V 〉 (〈V 1

2 , R
′〉+ θ〈dX

′
, dS

′〉). (3.22)

We also estimate the reduction in log det(X)

log det(X+) − log det(X) = log det(I + θX−1dX)

≥ θtr(X−1dX) − 1
2

‖θX−1dX‖2
1− ‖θX−1dX‖∞ . (3.23)

Noting that θ is given by (3.15), we have

‖θV − 1
2 dX

′‖∞ ≤ α, (3.24)

so

log det(X+)− log det(X) ≥ θ〈V − 1
2 , dX

′〉 − 1
2
‖θV − 1

2 dX
′‖2

1− α
. (3.25)

Similarly, we also have the result on S:

log det(S+)− log det(S) ≥ θ〈V − 1
2 , dS

′〉 − 1
2
‖θV − 1

2 dS
′‖2

1− α
. (3.26)

Using the above inequalities, we give the estimation of the reduction in Ψn+ρ(X, S).

Ψn+ρ(X+, S+) − Ψn+ρ(X, S) ≤ (n + ρ)
〈I, V 〉 (θ〈V 1

2 , R
′〉

+ θ2〈dX
′
, dS

′〉)− θ〈V − 1
2 , dS

′
+ dX

′〉
+

1
2(1− α)

(‖θV − 1
2 dS

′‖2 + ‖θV − 1
2 dX

′‖2)

= −θ
〈I, V 〉
(n + ρ)

‖V − 1
2 − n + ρ

〈I, V 〉V
1
2 ‖2

+
θ2(n + ρ)
〈I, V 〉 〈dX

′
, dS

′〉

+
1

2(1− α)
(‖θV − 1

2 dS
′‖2 + ‖θV − 1

2 dX
′‖2). (3.27)

It follows from (3.9) that
dX

′
+ dS

′
= R

′
. (3.28)

The relation 〈dX
′
, dS

′〉 ≥ 0, the above equation and (3.15) imply that

‖θV − 1
2 dS

′‖2 + ‖θV − 1
2 dX

′‖2 ≤ α2. (3.29)
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Furthermore, it is obvious to see that

〈dX
′
, dS

′〉 ≤ 1
2
‖dX

′
+ dS

′‖2 =
1
2
‖R′‖2. (3.30)

Therefore,

θ2(n + ρ)
〈I, V 〉 〈dX

′
, dS

′〉 ≤ α2

‖V − 1
2 ‖2∞‖ 〈I,V 〉

n+ρ V − 1
2 − V

1
2 ‖2

=
α2(n + ρ)

‖V − 1
2 ‖2∞〈I, V 〉

=
1
2
(n + ρ)α2[(

1√
λ1

)2(λ1 + . . . + λn)]−1

=
1
2
α2 n + ρ

λ1
λ1

+ . . . + λn

λ1

≤ 1
2
(1 + ρ/n)α2, (3.31)

where 0 < λ1 ≤ . . . , λn are the eigenvalues of V. Now inequalities (3.27), (3.29) and (3.31) show that

Ψn+ρ(X+, S+)−Ψn+ρ(X, S) ≤ −α
‖V − 1

2 − n+ρ
〈I,V 〉V

1
2 ‖

‖V − 1
2 ‖∞

+
α2

2(1− α)
+

1
2
(1 + ρ/n)α2. (3.32)

which completes the proof. QED
The above lemma gives the bound for the reduction in the potential function Ψn+ρ(X, S). The first

order term on α in the right hand side of (3.17) depends on V. An estimate to this term is given by the
following result, which was proved by Ye (1998).

Lemma 3.3 Let V ∈ S<n×n, V Â 0, and ρ ≥ √
n, then the inequality

‖V − 1
2 − n+ρ

〈I,V 〉V
1
2 ‖

‖V − 1
2 ‖∞

≥
√

3
4

(3.33)

holds.

From (3.32) and (3.33), it follows that

Ψn+ρ(X+, S+)−Ψn+ρ(X, S) ≤ g(α), (3.34)

where g(α) = −
√

3
2 α + α2

2(1−α) + 1
2 (1 + ρ/n)α2. Because g(0) = 0 and g′(0) = −

√
3

2 , there exists a number
α∗ > 0 such that

g(α) ≤ −
√

3
4

α, ∀ 0 < α ≤ α∗. (3.35)

If α = α∗ in every iteration, we have

Ψn+ρ(X+, S+)−Ψn+ρ(X, S) ≤ −
√

3
4

α∗ < 0. (3.36)

From the above analysis, we can construct our algorithm for QSDP (1.9)-(1.11) as follows.

Algorithm 3.4 Given an initial central path point (X◦, y◦, S◦) ∈ F◦d and X◦ ∈ F◦p , set ρ =
√

n and
k = 0. Given ε > 0. While 〈Xk, Sk〉 ≥ ε do
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Step 1 Set (X, S) = (Xk, Sk), γ = n/(n + ρ).

Step 2 Apply Algorithm 4.1 to solve system (3.3)-(3.5).

Step 3 Let (Xk+1, yk+1, Sk+1) = (Xk, yk, Sk) + θ̄(dX, dy, dS),
where θ̄ = argminα≥0Ψn+ρ(X + θdX, S + θdS).

Step 4 k := k + 1, and go to Step 1.

The following theorem gives an upper bound for the number of iterations of the above algorithm.

Theorem 3.5 Let ρ =
√

n, Algorithm 3.4 terminates after at most O(
√

n log(〈X◦, S◦〉/ε)) iterations,
namely the stopping condition

〈Xk, Sk〉 < ε (3.37)

holds for some k = O(
√

n log(〈X◦, S◦〉/ε)).

Proof From Step 3 of the algorithm and (3.36), we have

Ψn+ρ(Xk+1, Sk+1) ≤ Ψn+ρ(Xk, Sk)− δ, (3.38)

where δ =
√

3
4 α∗ > 0. The above inequality leads to

Ψn+ρ(Xk, Sk) ≤ Ψn+ρ(X◦, S◦)− kδ. (3.39)

Using definitions (3.1) and (3.2), inequality (3.39), the following inequality (see Ye(1998))

n log〈X, S〉 − log det(XS) ≥ n log n, (3.40)

and the assumption that (X◦, y◦, S◦) is on the central path, we can obtain that

ρ log〈Xk, Sk〉 = Ψn+ρ(Xk, Sk)− n log〈Xk, Sk〉+ log(det(XkSk)) (3.41)
≤ Ψn+ρ(X◦, S◦)− kδ − n log〈Xk, Sk〉+ log(det(XkSk))
≤ Ψn+ρ(X◦, S◦)− kδ − n log n

= ρ log〈X◦, S◦〉 − kδ + n log〈X◦, S◦〉 − n log(n)− log(det(X◦S◦))
= ρ log〈X◦, S◦〉 − kδ. (3.42)

Therefore,

log〈Xk, Sk〉 ≤ log〈X◦, S◦〉 − δ

ρ
k, (3.43)

which yields

〈Xk, Sk〉 ≤ 〈X◦, S◦〉 exp
{
− δ

ρ
k

}
. (3.44)

When the right hand of the above inequality is less than ε, the algorithm terminates.
Now we consider the number k such that

〈X◦, S◦〉 exp
{
− δ

ρ
k

}
≥ ε. (3.45)

The above inequality and the fact that ρ =
√

n imply that

k ≤ ρ

δ
log(〈X◦, S◦〉/ε)

=
ρ

δ
log(〈X◦, S◦〉/ε)

= O(
√

n log(〈X◦, S◦〉/ε)). (3.46)

Hence, the theorem is true. QED
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4 The calculations of the search direction

In our algorithm given in the previous section, the search direction (dX, dy, dS) is computed by solving
system (3.3)-(3.5). Using transformations (3.8), we only need to solve system (3.9)-(3.11). Substituting
(3.9) into (3.11), we rewrite the system as:

ϕ̄(dX
′
)−

m∑

i=1

(dy)iA
′
i + dX

′
= R

′
, (4.1)

〈A′
i, dX

′〉 = 0, i = 1, . . . , m. (4.2)

Using the notation (Golub and van Loan (1996))

vec(X) = (X(:, 1)T , . . . , X(:, n)T ), (4.3)

we can reformulate system (4.1)-(4.2) as

(Q + I)vec(dX
′
)−Ady = vec(R

′
) (4.4)

−AT vec(dX
′
) = 0, (4.5)

where A = (a1, . . . , am), ai = vec(A
′
i), and

Q =




∑`
i=1 W

′
i (1, 1)H

′
i . . .

∑`
i=1 W

′
i (1, n)H

′
i

... . . .
...∑`

i=1 W
′
i (n, 1)H

′
i . . .

∑`
i=1 W

′
i (n, n)H

′
i


 (4.6)

is a block matrix in <n2×n2
. (4.4)-(4.5) can be rewritten in matrix form:
(

Q + I −A
−AT O

)(
vec(dX

′
)

dy

)
=

(
vec(R

′
)

o

)

.

(4.7)

Under our assumption that Hi,Wi º 0, it can be seen that Q º 0. The linearly independence of {Ai}
implies that A is of full column rank. Therefore the matrix

(
Q + I −A
−AT O

)
(4.8)

is nonsingular. Thus, the vectors vec(dX
′
) and dy can be solved from (4.7) uniquely. Here, one would

ask whether dX
′

= vec1(vec(dX
′
)) is symmetric. We claim that the answer is yes. Since (4.3) has a

unique solution, we only need to prove that the equivalent form (3.3) has a symmetric solution. Let
A
′
m+1, . . . ,A

′
1
2n(n+1)

be the orthonormal basis of the null space of A
′
1, . . . ,A

′
m in S<n×n. (4.2) implies

that dX
′
can be expressed in the form

dX
′
=

1
2 n(n+1)∑

k=m+1

νkA
′
k. (4.9)

No matter what ν = (νm+1, . . . , ν 1
2 n(n+1))T is, dX

′
is symmetric. Because system (4.1) corresponds to

the subproblem :

min
1
2
〈ϕ̄(dX

′
), dX

′〉+
1
2
〈dX

′
, dX

′〉 − 〈R′
, dX

′〉
s. t. 〈A′

i, dX
′〉 = 0, i = 1, . . . , m.
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It is equivalent to the following subproblem:

min
1
2
νT Mν + cT ν (4.10)

s. t. ν ∈ < 1
2 n(n+1)−m, (4.11)

where ci = 〈R′
, A

′
i〉, and

M(i, j) = 〈A′
i, A

′
j〉+

∑̀

k=1

〈(H ′
kA

′
iW

′
k, A

′
j〉,

for i, j = 1 + m, . . . , 1
2n(n + 1). The facts that ϕ º 0 and Am+1, . . . ,A

′
1
2n(n+1)

are linearly independent
indicate that M Â 0. So subproblem (4.10) has a unique solution ν∗. Let

ˆdX ′ =

1
2 n(n+1)∑

k=m+1

ν∗kA
′
k, (4.12)

d̂y be the solution of the following linear system:


〈A′

1, A
′
1〉 . . . 〈A′

1, A
′
m〉

... . . .
...

〈A′
1, A

′
1〉 . . . 〈A′

m, A
′
m〉


 d̂y =



〈R′ − ˆdX ′ − ϕ̄(dX

′
), A

′
1〉

...
〈R′ − ˆdX ′ − ϕ̄(dX

′
),A

′
m〉




.

(4.13)

We can see that ( ˆdX ′ , d̂y) is a solution to system (4.1)-(4.2) and ˆdX ′ is symmetric.
In our algorithm, we also need to compute the scaling matrix D = X

1
2 (X

1
2 SX

1
2 )−

1
2 X

1
2 . We here

adopt the technique introduced by Todd, Toh and Tütüncü[8]. Let the Cholesky factorizations of the
matrices X and S be

X = L1L
T
1 , S = L2LT

2 . (4.14)

we can compute the SVD of LT
2 L1:

LT
2 L1 = UΛV T . (4.15)

Define J = L−1
1 X

1
2 , which is an orthogonal matrix. From the fact that

X
1
2 SX

1
2 = JT (LT

1 L2)(LT
2 L1)J

= (JT V )Λ2(V T J),

it follows
(X

1
2 SX

1
2 )−

1
2 = (JT V )Λ−1(V T J). (4.16)

Thus, D = L1V Λ−1V T L1 = GGT , where G = L1V Λ−
1
2 . Thus, the following algorithm can be used

to solve system (3.3)-(3.5).

Algorithm 4.1

Step 1 Compute X = L1L
T
1 , S = L2L

T
2 , and LT

2 L1 = UΛV T .

Step 2 G = L1V Λ−
1
2 , D = GGT

Step 3 Solve system (4.7).
Let dX

′
= vec−1(vec(dX

′
)) and dS

′
= R

′ − dX
′
.

Step 4 Compute dX,dS from (3.8), Stop.

In the above algorithm, Step 1 and Step 2 are used to compute the scaling matrix D. Step 3 and Step
4 are to solve system (3.3)-(3.5). The above algorithm is used in Step 2 of Algorithm 3.4 for computing
the search direction.
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5 Conclusion

An extended SDP with a quadratic term in the objective function is studied in this paper. This work
can be viewed as a generalization of quadratic programming just as semidefinite programming being a
generalization of linear programming. We have given an interior point method that uses the Nesterov-
Todd search direction for the extended problem. The polynomial-time property of the algorithm is
proved.
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