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Abstract. The trust region method has been proven to be very successful in both unconstrained
and constrained optimization. It requires the global minimum of a general quadratic function subject
to ellipsoid constraints. In this paper, we generalize the trust region subproblem by allowing two
general quadratic constraints. Conditions and properties of its solution are discussed.
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1. Introduction. Many trust region algorithms for constrained optimization re-
quire solving subproblems of the following form:

min{q(x) :‖ Dx ‖2≤ δ, ‖ ATx+ c ‖2≤ ξ, x ∈ <n},(1.1)

where q : <n → R is a quadratic model of the objective function in a neighborhood of
the current iterate, D is a positive definite scaling matrix, c ∈ <m is a vector whose
elements are the values of the constraints, AT ∈ <m×n is the Jacobian matrix of the
constraints computed at the current iterate, and the numbers δ and ξ are determined
by the trust region method (for example, see [1] and [11]). For unconstrained opti-
mization problems, the trust region subproblem is to minimize a quadratic function
in an ellipsoid, namely

min{q(x) :‖ Dx ‖2≤ δ, x ∈ <n}.(1.2)

Many results for problem (1.2) have been obtained, including Gay [4], Moré and
Sorensen [10], Mart́ınez [7], and Sorensen [12]. Most authors study the global mini-
mizer of (1.2), but Mart́ınez [7] also studies local minimizers of (1.2). One motivation
for studying nonglobal local minimizers is that a global minimizer of (1.1) at which
the constraint ||ATx+ c|| ≤ ξ is inactive must be a local minimizer of (1.2) (see [7]).

Problem (1.1) has also been studied by many researchers; for example, see Celis,
Dennis, and Tapia [1], Crouzeix, Mart́ınez, Legaz, and Seeger [2], Heinkenschloss [5],
Yuan [15], [16], Zhang [17], and the references therein. It is interesting to note that
unlike the case of one constraint, for the two constraint case it is possible that the
Hessian of the Lagrangian has negative eigenvalues, even when only one constraint is
active at the global minimizer. For details, see Yuan [15].

Several extensions of problem (1.1) are of interest. The simplest type is to consider
the problem

min{q(x) : c1(x) ≤ 0, c2(x) ≤ 0, x ∈ <n},(1.3)
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where q(x), c1(x), and c2(x) are quadratic functions. Several special cases of (1.3)
have been discussed in the literature. For example, Heinkenschloss [5] considered
the case that q(x), c1(x), c2(x) are all convex quadratics; Mart́ınez and Santos [8]
considered (1.3) with a general quadratic q(x) and c1, c2 strictly convex quadratics.
More can also be found in [15], [16], [17]. In this paper we consider the case where
q(x), c1(x), and c2(x) all are general quadratic functions. Our paper is motivated by
a recent work of Moré [9], in which he studied the problem of minimizing a quadratic
function subject to one general quadratic constraint which has the form

min{q(x) : c(x) ≤ 0, x ∈ <n},(1.4)

where q(x), c(x) are general quadratic functions. Stern and Wolkowicz [13] also studied
the above problem with a two-sided (upper and lower bound) quadratic constraint;
they also discussed the characterizations of optimality and gave some conditions for
the existence of solutions.

Our paper can be viewed as a generalization of Yuan [15] from convex constraints
to general constraints. Our results are also related to Mart́ınez [7], as his analysis on
nonglobal local minimizers of problem (1.2) are applicable to problem (1.1) when the
constraint ||ATx + c|| ≤ ξ is inactive at the solution. However, our results are more
general because we study general quadratic functions c1(x) and c2(x) while Mart́ınez
[7] and Yuan [15] require convex constraints.

Throughout this paper, we assume that the object function q(x) and the con-
strained functions c1(x) and c2(x) are all quadratic:

q(x) = γ + wTx+
1

2
xTQx,(1.5)

c1(x) = γ1 + wT1 x+
1

2
xTC1x,(1.6)

c2(x) = γ2 + wT2 x+
1

2
xTC2x,(1.7)

where γ, γ1, γ2 ∈ <, w,w1, w2 ∈ <n, and Q,C1, C2 are symmetric matrices in <n×n.
We also use the following notations:

E1 = {x : x ∈ <n, c1(x) ≤ 0},(1.8)

E2 = {x : x ∈ <n, c2(x) ≤ 0},(1.9)

E = E1 ∩ E2.(1.10)

Some of our results depend on the following conditions:

inf
x∈E1

{c2(x)} < 0 < sup
x∈E1

{c2(x)},(1.11)

inf
x∈E2

{c1(x)} < 0 < sup
x∈E2

{c1(x)},(1.12)

which can be viewed as a generalization of a condition given by Moré for one constraint
problem (see (2.3) below). The above conditions are not restrictive for problem (1.3).
In fact, if the left part of (1.11) is not true, it follows from Theorem 3.2 of [9] (given
as Theorem 2.3 below) that there exists λ ∈ <+ such that c2(x) +λc1(x) is equal to a
convex quadratic, which means that C2 + λC1 is positive semidefinite. Then problem
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(1.3) reduces to minimizing q(x) subject to c1(x) = 0 in the subspace NC2+λC1
. If the

right inequality of (1.11) fails, (1.3) reduces to the one constraint problem studied by
Moré [9]. Therefore, it is no loss of generality in assuming (1.11)–(1.12).

The paper is organized as follows. In the next section we state some known re-
sults which we will use repeatedly in the paper. In section 3, we give a condition that
ensures the existence of a global minimizer and derive some optimality conditions
for problem (1.3) when both constraints are active and the gradients are zeros at the
solution. In order to further our analysis, we also explore some relations between opti-
mality and certain definiteness of matrix pencils. In section 4, we consider optimality
for problem (1.3) when q(x), c1(x), and c2(x) are all general quadratics. Necessary
conditions for local minimizers and global minimizers are given. It is shown that the
Hessian of the Lagrangian at the solution has at most one negative eigenvalue if the
Jacobian of the constraints is not zero and that for some special cases it has no neg-
ative eigenvalue. These results are not trivial, as directly applying standard second
order necessary conditions can only show that the Hessian of the Lagrangian has at
most two negative eigenvalues. A few remarks are also made in last section.

2. Some important results. In this section we state some known results which
will be used in our analysis.

Theorem 2.1 (see Moré [9]). If A ∈ <n×n and C ∈ <n×n are symmetric matri-
ces, then A+ λC is positive definite for some λ ∈ < if and only if

w 6= 0, wTCw = 0 =⇒ wTAw > 0.(2.1)

Theorem 2.2 (see Moré [9]). Assume that A ∈ <n×n and C ∈ <n×n are sym-
metric matrices and that C is indefinite. Then

wTCw = 0 =⇒ wTAw ≥ 0(2.2)

if and only if A+ λC is positive semidefinite for some λ ∈ <.
Theorem 2.3 (see Moré [9]). Let q(x) and c(x) be quadratic functions defined

on <n. Assume that

inf
x∈<n

c(x) < 0 < sup
x∈<n

c(x)(2.3)

holds and that ∇2c 6= 0. A vector x∗ is a global minimizer of the problem

min{q(x) : c(x) = 0, x ∈ <n}(2.4)

if and only if c(x∗) = 0 and there is a multiplier λ∗ ∈ < such that the Kuhn–Tucker
condition

∇q(x∗) + λ∗∇c(x∗) = 0(2.5)

is satisfied with

∇2q(x∗) + λ∗∇2c(x∗)(2.6)

positive semidefinite.
Theorem 2.4 (see Yuan [15]). Let C,D ∈ <n×n be two symmetric matrices and

let A and B be two closed sets in <n such that A ∪B = <n. If we have

xTCx ≥ 0, x ∈ A, xTDx ≥ 0, x ∈ B,(2.7)

then there exists a t ∈ [0, 1] such that the matrix tC+(1−t)D is positive semidefinite.
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3. Optimality and matrices pencils. In this section, we first give a condition
which implies that the global minimum of problem (1.3) can be attained. Then, we
study a special case of (1.3) when both constraints are active and the Jacobian of the
constraints are zero at the solution.

Denote

S1 = {x : x ∈ <n, xTC1x ≤ 0},(3.1)

S2 = {x : x ∈ <n, xTC2x ≤ 0},(3.2)

S = S1 ∩ S2.(3.3)

Lemma 3.1. Assume that the feasible set (1.10) is nonempty ; if

x 6= 0, x ∈ S =⇒ xTQx > 0,(3.4)

then (1.3) has a global minimizer.
Proof. If problem (1.3) does not have a global minimizer, then there exists

{xk, k = 1, 2, ...} such that limk→∞ ||xk|| → ∞ and

q(xk) ≤ q(x1), c1(xk) ≤ 0; c2(xk) ≤ 0.(3.5)

Let dk = xk
‖xk‖ . Without loss of generality (w.l.o.g.), we assume that limk→∞ dk = d0.

It then follows from (1.5)–(1.7) and (3.5) that

d0
TQd0 ≤ 0, d0

TC1d0 ≤ 0, d0
TC2d0 ≤ 0,

which contradicts (3.4). Thus, the lemma is true.
It should be noted that (3.4) is not a necessary condition for problem (1.3) to have

a global minimizer. For example, let x = (x1, x2)T ∈ <2; we define q(x) = x2
1 − x2

2,
c1(x) = x2, and c2(x) = 1

2x1 − x2. This problem has a global minimizer (0, 0)T .
Obviously S = <2, but for x̄ = (0, 1)T ∈ S, x̄TQx̄ < 0 holds.

Lemma 3.1 indicates that there are connections between Q, C1, C2, and the global
minimizer of (1.3). Moré [9] and Stern and Wolkowicz [13] have derived relations
between matrix pencils and the optimization problem with one general quadratic
constraint. In the rest of this section, we will discuss the relation between matrix
pencils and a special case of problem (1.3) when both constraints are active and the
Jacobian of the constraints are zero at the solution.

Assume that x∗ is a local minimizer of problem (1.3) at which c1(x∗) = c2(x∗) = 0
and∇c1(x∗) = ∇c2(x∗) = 0. It is easy to see that the null vector 0 is a local minimizer
of the following problem:

min{q(x∗ + x) : x ∈ S},(3.6)

where S is defined by (3.3).
For any A which is an n× n symmetric matrix A ∈ <n×n, we define NA = {x :

xTAx = 0}. Denote F = NC1 ∩ NC2 . The following result is the first conclusion of
the main theorem of Uhlig [14].

Theorem 3.2. Assume that A,B ∈ <n×n and n ≥ 3; then, there exist α, β ∈ <
satisfying α2 +β2 > 0 such that αA+βB is positive definite if and only if NA∩NB =
{0}.

In what follows we state a result about the pair of matrices (C1, C2).
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Lemma 3.3. αC1 + βC2 is indefinite for any α, β ∈ < satisfying α2 + β2 > 0 if
and only if

inf
x∈NC1

{xTC2x} < 0 < sup
x∈NC1

{xTC2x},(3.7)

inf
x∈NC2

{xTC1x} < 0 < sup
x∈NC2

{xTC1x}.(3.8)

Proof. First suppose that (3.7)–(3.8) hold. For any α, β ∈ < satisfying α2 +β2 >
0, w.l.o.g. assume α > 0. It follows from (3.8) that

inf
x∈NC2

xT (αC1 + βC2)x < 0 < sup
x∈NC2

xT (αC1 + βC2)x,(3.9)

which shows that αC1 + βC2 is indefinite.
Now we assume that αC1 +βC2 is indefinite for any α, β ∈ < satisfying α2 +β2 >

0. If (3.7)–(3.8) is not true, there is no loss of generality in assuming that

inf
x∈NC1

xTC2x = 0.(3.10)

Our assumption that αC1 +βC2 is indefinite for any α, β ∈ <n satisfying α2 +β2 > 0
implies that C1 is indefinite; thus, it follows from (3.10) and Theorem 2.2 that there
exists λ ∈ < such that C2 + λC1 is positive semidefinite, which is a contradiction.
This completes our proof.

For the special problem (3.6), conditions (1.11) and (1.12) are equivalent to

inf
x∈S1

{xTC2x} < 0 < sup
x∈S1

{xTC2x},(3.11)

inf
x∈S2

{xTC1x} < 0 < sup
x∈S2

{xTC1x}.(3.12)

We see that our conditions (3.11)–(3.12) are strictly weaker than (3.7)–(3.8). If

C1 =

(
−1 0
0 1

)
, C2 =

(
1 0
0 −4

)
,(3.13)

then (3.11)–(3.12) are satisfied, but (3.7)–(3.8) fail.
One direct consequence of (3.11)–(3.12) is the following lemma.
Lemma 3.4. If (3.11)–(3.12) hold, then

span (S1 ∩ S2) = <n.(3.14)

Proof. By (3.11)–(3.12), both C1 and C2 are indefinite. If max(xTC1x, x
TC2x) ≥

0 for every x ∈ <n, it follows from Theorem 2.4 that there exists λ ∈ (0, 1) such that
C1 + λ(C1 − C2) is positive semidefinite, which implies

xTC2x ≥ 0 whenever xTC1x ≤ 0(3.15)

and

xTC1x ≥ 0 whenever xTC2x ≤ 0.(3.16)

Inequalities (3.15)–(3.16) contradict (3.11)–(3.12). Thus, there exists x̄ ∈ <n such
that

x̄TC1x̄ < 0, x̄TC2x̄ < 0.(3.17)
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Define

δ(x̄, ε) = {x : ‖ x− x̄ ‖≤ ε }.(3.18)

It follows from (3.17) and the continuity of quadratic functions that for sufficiently
small ε > 0,

x ∈ S1 ∩ S2 ∀ x ∈ δ(x̄, ε).(3.19)

The above relation implies (3.14). This proves our lemma.
The above lemma implies the following result.
Lemma 3.5. If (3.11)–(3.12) hold and if y∗ = 0 is a local minimizer of (3.6), then

∇q(x∗) = 0.
Proof. Because y∗ = 0 is a local minimizer of (3.6), it follows that

xT∇q(x∗) ≥ 0 ∀ x ∈ S1 ∩ S2.(3.20)

Due to S1 ∩ S2 = −(S1 ∩ S2), (3.20) implies that

xT∇q(x∗) = 0 ∀x ∈ S1 ∩ S2.(3.21)

It follows from (3.21) and (3.14) that ∇q(x∗) = 0.
Motivated by the results of Morè (see Theorems 2.1–2.3), one may guess that if

x∗ = 0 is a global minimizer of problem (3.6) and conditions (3.11)–(3.12) hold, then
there may exist α, β ∈ < such that Q+αC1 +βC2 is positive definite or semidefinite.
However, our next example shows that even when conditions (3.7)–(3.8) are true and
x∗ = 0 is a global minimizer of problem (3.6), Q + αC1 + βC2 may be indefinite for
any α, β ∈ <.

Example 1.

min{−(x2 + y2)/3 + y2 − x2 − 2xy : x2 − y2 ≤ 0, 2xy ≤ 0}.(3.22)

For this problem, we have

Q = −1

3

(
1 0
0 1

)
+

(
−1 0
0 1

)
−
(

0 1
1 0

)
,(3.23)

C1 =

(
1 0
0 −1

)
, C2 =

(
0 1
1 0

)
.(3.24)

It is easy to show that αC1 +βC2 is indefinite for any α, β ∈ < satisfying α2 +β2 > 0.
Thus, conditions (3.7)–(3.8) hold. One can also easily verify that x∗ = 0 is a unique
solution of problem (3.22). However, for any α, β ∈ <, it holds that Q+αC1 +βC2 =
− 1

3I + (α− 1)C1 + (β − 1)C2, which implies that Q+ αC1 + βC2 cannot be positive
definite or semidefinite.

To study the optimal conditions at a global minimizer of (3.6), we also need the
following result due to Hestenes and Mcshane [6].

Lemma 3.6. Let C1, C2 ∈ <n×n be symmetric matrices satisfying (3.7)–(3.8).
Let m(α, β) be the least eigenvalue of the matrix Q+ αC1 + βC2. Then, there exists
(α0, β0) ∈ <2 which maximizes the function m(α, β).

Our next result is a small modification of Lemma B in [6]. For completeness, we
rewrite it and give a detailed proof.
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Lemma 3.7. Assume the matrices C1 and C2 satisfying (3.7)–(3.8) and (α0, β0) ∈
<2 maximize the function m(α, β). Set m0 = m(α0, β0), with X as the subspace
spanned by all the eigenvectors of the matrix Q + α0C1 + β0C2 related to m0. Then
for any linear space L which contains X, there is no αC1+βC2 positive definite on L.

Proof. Assume there exists C̄ = αC1 + βC2 positive definite on L. Let K be
the unit sphere xTx = 1, and L1 is the set of points in L on K. Choose b > 0 such
that xT C̄x > b on L1, and let N̄ be a neighborhood of L1 related to K on which
xT C̄x > b, m1 is the minimum of xT (Q + α0C1 + β0C2)x on the closed set K − N̄ ;
then, m1 > m0. It follows that for a sufficiently small positive constant t one will
have

xT (Q+ α0C1 + β0C2 + tC̄)x > m0(3.25)

on K − N̄ . But,

xT (Q+ α0C1 + β0C2 + tC̄)x > m0 + tb(3.26)

on N̄ . Thus, it holds that m(α0 + tα, β0 + tβ) > m(α0, β0), which contradicts the
choice of (α0, β0). This proves the lemma.

Now we can give one of our main results in this section.
Theorem 3.8. If (3.7)–(3.8) hold and if y∗ = 0 is a local minimizer of problem

(3.6), then ∇q(x∗) = 0 and there exist α, β ∈ < such that Q+αC1 +βC2 has at most
two negative eigenvalues.

Proof. It follows from Lemma 3.5 that ∇q(x∗) = 0. Because ∇q(x∗) = 0 and the
optimality of y∗ = 0, we have that xTQx ≥ 0 for all x ∈ S.

If the theorem is not true, assume that for any α, β ∈ <, Q + αC1 + βC2 has
three or more negative eigenvalues. Let (α0, β0) maximize the function m(α, β), and
let L be the subspace spanned by the eigenvectors of the matrix Q + α0C1 + β0C2

corresponding to its negative eigenvalues. For example, L = span{x1, x2, . . . , xl :
(Q+ α0C1 + β0C2)xi = aixi, ai < 0, ‖xi‖2 = 1} and l = dim(L) ≥ 3 . It follows that
in L, we have

Q+ α0C1 + β0C2 =

l∑
i=1

aixix
T
i .(3.27)

If there exists x0 ∈ F 6= 0 in L, w.l.o.g. we assume that ‖x0‖2 = 1. Then, by the
definition of F , we get

xT0 (Q+ α0C1 + β0C2)x0 ≥ 0,(3.28)

which contradicts the definition of L. It follows that F ∩ L = {0}. However, since
l ≥ 3, it follows from Theorem 3.2 that there exist α, β ∈ < such that αC1 + βC2 is
positive definite on L, which contradicts Lemma 3.7.

In fact, under the conditions of Theorem 3.8, let α0 and β0 as defined in Lemma 3.6
and m0 = m(α, β) denote L1 as the subspace spanned by the eigenvectors of Q +
α0C1 + β0C2 related to m0. If m0 < 0, then by Theorem 3.8 we have dim(L1) < 3.
By Lemma 3.7, dim(L1) 6= 1; thus, it must hold that dim(L1) = 2. This can also
be verified by our Example 1, where Q + C1 + C2 = − 1

3I, m(1, 1) = − 1
3 . But for

any (α, β) ∈ <2, Q + αC1 + βC2 = − 1
3I + (α − 1)C1 + (β − 1)C2. If (α, β) 6= (1, 1),

then (α − 1)C1 + (β − 1)C2 is indefinite, which implies that the least eigenvalue of
Q+αC1+βC2 is less than − 1

3 . Thus, for Example 1, it holds that m0 = m(1, 1) = − 1
3 .
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Now we only consider the case m0 < 0 under the conditions of Theorem 3.8. Let
L1 be the subspace defined by L1 = {x ∈ <n : (Q+ α0C1 + β0C2)x = m0x}. It easy
to see that in L1, Qx = (−α0C1 − β0C2 +m0I)x. Thus, x∗ = 0 is a global minimizer
of the following problem:

min{xT (−α0C1 − β0C2 +m0I)x : xTC1x ≤ 0, xTC2x ≤ 0, x ∈ L1}.(3.29)

Since m0 < 0, xTC1x and xTC2x vanish simultaneously only at the point 0. By
Lemma 3.7, there is no α, β ∈ < such that αC1 + βC2 is positive definite. Thus, in
L1 we have

xTC1x 6= 0 ∀xTC2x = 0, x 6= 0(3.30)

and

xTC2x 6= 0 ∀xTC1x = 0, x 6= 0.(3.31)

If xTC1x > 0 for all xTC2x = 0, x 6= 0 ∈ L1, then it follows from Theorem 2.1 that
there exists λ ∈ < such that C1 + λC2 is positive definite, which is a contradiction.
Therefore, there exists x̄ ∈ L1 such that

x̄TC2x̄ = 0, x̄TC1x̄ ≤ 0.(3.32)

The fact that x̄T (−α0C1 + m0I)x̄ ≥ 0 implies that α0 > 0. Similarly, one can show
that β0 > 0.

If conditions (3.11)–(3.12) are true and (3.7)–(3.8) fail, then we have the following
result.

Theorem 3.9. If (3.11)–(3.12) hold and (3.7)–(3.8) fail and if y∗ = 0 is a local
minimizer of problem (3.6), then ∇q(x∗) = 0 and there exist λ1, λ2 ∈ < such that
Q+ λ1C1 + λ2C2 is positive semidefinite.

Proof. It follows from Lemma 3.5 that ∇q(x∗) = 0. Since conditions (3.7)–(3.8)
are not satisfied, it follows from Lemma 3.3 that there exist α, β ∈ < such that
α2 + β2 6= 0 and that αC1 + βC2 is positive semidefinite. Without loss of generality,
we assume that α 6= 0. Define λ = β/α. First we assume that α > 0, which implies
that C1 + λC2 is positive semidefinite. This leads to the following two cases: if λ > 0
then xTC1x ≤ 0 =⇒ xTC2x ≥ 0, which contradicts (3.11)–(3.12); if λ < 0 then
xTC1x ≤ 0 =⇒ xTC2x ≤ 0, which contradicts (3.11).

Now we assume that α < 0, which implies that C1 +λC2 is negative semidefinite.
If λ > 0 then xTC1x = 0 =⇒ xTC2x ≤ 0; y∗ = 0 is a local minimizer of problem
min{xTQx : xTC1x = 0, x ∈ <n}. Thus, our theorem follows from Theorem 2.2.
If λ ≤ 0 then xTC2x ≤ 0 =⇒ xTC1x ≤ 0, which contradicts (3.12). Therefore, the
theorem is proved.

If Ci is positive definite then we can choose the corresponding Lagrange multiplier
λi large enough so that Q+λiCi is positive definite. But in the case that C1 is positive
semidefinite and NC1

6= ∅, then even (3.11) holds, and there may be no λ1, λ2 ∈ < such
that Q + λ1C1 + λ2C2 is positive semidefinite. This can be verified by the following
example.

Q =

 1 1 0
1 1 1
0 1 0

 , C1 =

 0 0 0
0 0 0
0 0 1

 , C2 =

 1 0 0
0 −1 0
0 0 1

 .
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C1 is semidefinite and (3.11) holds; y∗ = 0 is a global minimizer of

min{xTQx : x ∈ S1 ∩ S2},(3.33)

but for any λ1, λ2 ∈ <, Q + λ1C1 + λ2C2 is not positive semidefinite. For the case
where C1, C2 are indefinite, if (3.11)–(3.12) do not hold, Theorem 3.9 may also fail.
For example,

Q =

 1 0 0
0 −1 0
0 0 −3

 , C1 =

 2 1 0
1 0 0
0 0 1

 , C2 =

 0 1 0
1 2 0
0 0 1

 .

Now we give a lemma which will be used in the next section.
Lemma 3.10. If C ∈ <n×n is a symmetric indefinite matrix, then span(NC) = <n.
Proof. Without loss of generality, we assume that

C = diag (α1, . . . , αI ;−β1, . . . ,−βJ ; 0, . . . , 0) ,(3.34)

where αi(i = 1, . . . , I) and βj(j = 1, . . . , J) are positive numbers and I ≥ 1, J ≥ 1.
It is easy to see that

βj
α1
e1 + eI+j ∈ NC (j = 1, . . . , J),(3.35)

ei −
αi
β1
eI+1 ∈ NC (i = 1, . . . , I),(3.36)

ek ∈ NC (k = I + J + 1, . . . , n),(3.37)

and these vectors are linearly independent. Thus, span(NC) = <n.
The following result is a direct consequence of Theorem 2.1.
Corollary 3.11. If y∗ = 0 is an isolated minimizer of the problem

min{xTQx+ gTx : xTCx = 0},(3.38)

then there exists λ ∈ < such that Q+ λC is positive definite.
Proof. For any nonzero x ∈ <n such that xTCx = 0, we have (−x)TC(−x) = 0;

thus, our assumption implies that

xTQx =
1

2
(xTQx+ gTx) +

1

2
(−xTQ(−x) + gT (−x)) > 0.(3.39)

Therefore, the corollary follows from Theorem 2.1.
Similarly, we can show the following theorem.
Theorem 3.12. If y∗ = 0 is an isolated minimizer of problem (3.6) and con-

ditions (3.7)–(3.8) fail, then there exist λ1, λ2 ∈ < such that Q + λ1C1 + λ2C2 is
positive definite.

Proof. For any feasible point x of (3.6), the point −x is also a feasible point.
Thus, y∗ = 0 is also an isolated local minimizer of (3.33). Therefore, we have that
xTQx > 0 for all nonzero x, which satisfies xTC1x = xTC2x = 0. Since conditions
(3.7)–(3.8) are not satisfied, w.l.o.g. we assume that (3.7) is not true. First, we assume
that

sup
x∈NC1

xTC2x = 0.(3.40)
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Thus, y∗ = 0 is also the unique global minimizer of

min{xTQx : xTC1x = 0}.(3.41)

It follows from Theorem 2.1 that there exists λ ∈ < such that Q + λC1 is positive
definite.

To complete our proof, we assume that

min
x∈NC1

xTC2x = 0.(3.42)

We consider three different cases: C1 is positive semidefinite, negative semidefinite,
or indefinite.

If C1 is positive semidefinite, then the feasible region {xTC1x ≤ 0} is the subspace
NC1

. Thus, the null vector 0 is an isolated local minimizer of

min{xTQx : xTC2x = 0, x ∈ NC1
},(3.43)

which shows that there exists µ ∈ < such that Q + µC2 is positive definite in NC1
.

Thus,

x 6= 0, xTC1x = 0 =⇒ xT (Q+ µC2)x > 0.(3.44)

Hence, there exists λ ∈ < such that Q+ µC2 + λC1 is positive definite.
If C1 is negative semidefinite, we have that

x 6= 0, xTC2x = 0 =⇒ xTQx > 0.(3.45)

Therefore, it follows from Theorem 2.1 that there exists µ ∈ < such that Q+ µC2 is
positive definite.

Finally, we consider if C1 is indefinite. It follows from (3.42) and Theorem 2.2
that there exists α ∈ < such that C2 + αC1 is positive semidefinite. Because y∗ = 0
is an isolated local minimizer of (3.6), we have for all x ∈ NC2+αC1

,

x 6= 0, xTC1x = 0 =⇒ xTQx > 0.(3.46)

Thus, it follows from Theorem 2.1 that there exists β ∈ < such that Q + βC1 is
positive definite in the subspace NC2+αC1

. Using Theorem 2.1 again, we can show
that there exists γ ∈ < such that Q+ βC1 + γ(C2 + αC1) is positive definite. Hence,
the theorem is true.

4. Optimal conditions. In this section we mainly give necessary conditions for
minimizers of problem (1.3). Necessary conditions for optimality are already given in
the previous section, when both constraints are active and gradients of the constraints
are zeros at the solution.

First, the following result is obvious.
Theorem 4.1. Assume that c1(x∗) < 0 and c2(x∗) < 0. x∗ is a local minimizer

of problem (1.3) if and only if ∇q(x∗) = 0 and Q is positive semidefinite.
Hence, in the following we assume that at least one of the constraints is active at

a minimizer.
If only one constraint is active at the global minimizer x∗, w.l.o.g. we assume that

c1(x∗) = 0, c2(x∗) < 0.(4.1)
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Theorem 4.2. Assume that (4.1) holds and that x∗ is a local minimizer of
problem (1.3). If ∇c1(x∗) 6= 0, then there exists λ1 ∈ <+ such that

∇q(x∗) + λ1 ∇c1(x∗) = 0(4.2)

holds and Q + λ1C1 has at most one negative eigenvalue. If ∇c1(x∗) = 0, then
∇q(x∗) = 0 and there exists λ1 ∈ <+ such that Q+ λ1C1 is positive semidefinite.

Proof. If ∇c1(x∗) 6= 0, (4.2) follows from the Kuhn–Tucker theory. It follows from
the second order necessary condition (see, for example, Fletcher [3]) that Q+λ1C1 is
positive semidefinite in the subspace

W = {d : ∇c1(x∗)
T
d = 0, d ∈ <n }.(4.3)

Therefore, Q+ λ1C1 has at most at most one negative eigenvalue.
Now we assume that ∇c1(x∗) = 0, since y∗ = 0 is a local minimizer of

min
d∈S1

q(x∗ + d).(4.4)

Thus, it follows that

dT∇q(x∗) = 0 ∀d ∈ NC1
.

The fact that ∇c1(x∗) = 0 and (1.12) imply that C1 is indefinite. Lemma 3.10
shows that span(NC1

) = <n, which gives dT∇q(x∗) = 0 for all d ∈ <n. Therefore,
∇q(x∗) = 0. This shows that (4.2) holds for all λ1 ∈ <. ∇q(x∗) = 0, Theorem 2.4,
and the fact that y∗ = 0 solves (4.4) imply that there exists λ1 ∈ <+ such that
Q+ λ1C1 is positive semidefinite.

Using the second order necessary conditions, it can be proven that the Hessian
of the Lagrangian has at most two negative eigenvalues if both constraints c1(x) ≤ 0
and c2(x) ≤ 0 are active at the solution.

For convex problems, Yuan [15] shows that the Hessian of the Lagrangian has
at most only one negative eigenvalue at a global minimizer. In the following, Yuan’s
results are extended to general cases. For the rest of this section we assume that x∗

is a global minimizer of problem (1.3) and both constraints are active at x∗, which
means that c1(x∗) = c2(x∗) = 0. First, we consider the case when ∇c1(x∗) and
∇c2(x∗) are linearly independent.

Theorem 4.3. If x∗ is a global minimizer of problem (1.3) and if ∇c1(x∗) and
∇c2(x∗) are linearly independent, then there exist λ1, λ2 ∈ <+ such that

∇q(x∗) + λ1∇c1(x∗) + λ2∇c2(x∗) = 0(4.5)

and Q+ λ1C1 + λ2C2 has at least n− 1 nonnegative eigenvalues.
Proof. Let λ1, λ2 ∈ <+ be the corresponding Lagrange multipliers H = Q +

λ1C1 + λ2C2. Then, by the second order necessary condition we know that

xTHx ≥ 0 ∀x ∈ <n, x ⊥ ∇c1(x∗), x ⊥ ∇c2(x∗).

If H has two negative eigenvalues, similar to Yuan [15], there exist e1, e2 ∈ <n such
that for all nonzero d ∈ span{e1, e2}, dTHd < 0. Because x∗ is the global minimizer,
(0, 0)T is the unique solution of

ĉ1(α, β) = c1(x∗ + αe1 + βe2) = 0, ĉ2(α, β) = c2(x∗ + αe1 + βe2) = 0,
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where (α, β) ∈ <2, x = x∗ + αe1 + βe2. So the curves ĉ1(α, β) = 0, ĉ2(α, β) = 0
meet only at (0, 0). Define F̄ as the set of all feasible points that are connected to
(0, 0); thus, the boundary of F̄ consists of two curves. One is ĉ1(α, β) = 0; the other
is ĉ2(α, β) = 0. Let the asymptotic direction of these two curves be d̄1, d̄2; then we
have

d̄1
T∇2ĉ1d̄1 = 0; d̄1

T∇2ĉ2d̄1 ≤ 0,(4.6)

d̄2
T∇2ĉ1d̄2 ≤ 0; d̄2

T∇2ĉ2d̄2 = 0.(4.7)

Due to the optimality of x∗, we know that

d̄1
T∇2q̂(x∗)d̄1 ≥ 0; d̄2

T∇2q̂(x∗)d̄2 ≥ 0,(4.8)

where q̂(α, β) = q(x∗+αe1 + βe2). Since dTHd < 0 for all nonzero d ∈ span{e1, e2},
it follows that

d̄1
T∇2ĉ2d̄1 < 0; d̄2

T∇2ĉ1d̄2 < 0.(4.9)

By considering a sequence of interior points of F̄ , one can see that for any direction
d between d̄1, d̄2,

dT∇2ĉ2d < 0; dT∇2ĉ1d < 0.(4.10)

Otherwise, assume there exists d ∈ int(K), dT∇2ĉ1d = 0; then, (α, β)∇2ĉ1(α, β)T

has a local maximum at d. Hence, ∇2ĉ1 is negative semidefinitive, which shows that
ĉ1(α, β) = 0 is a parabolic curve. Because the two curves have only one cross and
the asymptotic direction of a parabolic curve is the same one, we know that d̄1 is
parallel to d̄2, which contradicts (4.9). Hence, there exists a cone K whose boundary
direction is d̄1, d̄2, and for any interior direction of K, (4.10) holds. Now, for large
enough t > 0, −td is a feasible point. Because the two curves meet only at (0, 0),
−td 6∈ F̄ . Let the connected part of the feasible set which includes −td be F̂ ; then,
F̄ ∩ F̂ = φ. Because (0, 0) is the unique cross of two curves, the boundary of F̂
is defined by only one curve. Without loss of generality, assume that the boundary
is defined by ĉ1(α, β) = 0. Let the asymptotic directions of F̂ be d̂1, d̂2, and the
corresponding cone is K̂. Since (4.10) holds for all d̄ ∈ K, it holds that −K ⊂ K̂, so

−d̄2 ∈ K̂. Furthermore, for all d̂ ∈ K̂ we have

d̂T∇2ĉ2d̂ ≤ 0, d̂T∇2ĉ1d̂ ≤ 0.

One can also show that there exists no d̂ ∈ K̂ such that

d̂T∇2ĉ2d̂ = 0, d̂T∇2ĉ1d̂ = 0

and that

d̂1
T∇2ĉ1d̂1 = 0, d̂2

T∇2ĉ1d̂2 = 0,(4.11)

d̂1
T∇2ĉ2d̂1 < 0, d̂2

T∇2ĉ2d̂2 < 0.(4.12)

Hence, −d̄2 is an interior direction of K̂, which implies that ĉ2(α, β) = 0 is a parabolic
curve. This contradicts (4.9). So, H has at most one negative eigenvalue.
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The condition that the Hessian of the Lagrangian has at most one negative eigen-
value is not a sufficient condition for x∗ being a local minimizer. For example, point
(1, 1, 0)T is a Kuhn–Tucker point of the following 3-dimensional problem:

min− 4y + (x− 1)2 + y2 − 10z2(4.13)

s.t. x2 + y2 + z2 ≤ 2,(4.14)

(x− 2)2 + y2 + z2 ≤ 2.(4.15)

It is easy to see that the Lagrange multipliers are (1, 1). The Hessian of the Lagrangian
is  6 0 0

0 6 0
0 0 −6

 ,

which has 2(= n − 1) positive eigenvalues. But one can easily show that the point
(1, 1, 0)T is not a local minimizer because the second order necessary condition is not
satisfied.

In the following we deal with the case when ∇c1(x∗) and ∇c2(x∗) are linearly
dependent. Because we have already studied the case when ∇c1(x∗) = ∇c2(x∗) = 0
in the previous section, we can assume that either ∇c1(x∗) or ∇c2(x∗) is not zero.
Without loss of generality, we assume that ∇c1(x∗) 6= 0 and ∇c2(x∗) = α∇c1(x∗) for
the rest of the section. First we discuss the case when α > 0.

Theorem 4.4. If x∗ is a global minimizer of problem (1.3) and if there exists
α > 0 such that ∇c2(x∗) = α∇c1(x∗) 6= 0, then there exist λ1, λ2 ∈ <+ such that
(4.5) holds and the matrix Q+ λ1C1 + λ2C2 is positive semidefinite.

Proof. Since ∇c2(x∗) = α∇c1(x∗) 6= 0 for some α > 0, the optimality of x∗

implies that dT∇q(x∗) ≥ 0 for all d such that dT∇c1(x∗) < 0. Therefore, there exists
β ≤ 0 such that ∇q(x∗) = β∇c1(x∗). If β < 0, there is no loss of generality in
assuming that ∇c1(x∗) = ∇c2(x∗) = −∇q(x∗) 6= 0. First, we show that

max(xT (Q+ C1)x, xT (Q+ C2)x) ≥ 0 ∀x ∈ <n.(4.16)

If it fails, there exists d̂ ∈ <n such that

d̂T∇c1(x∗) 6= 0, d̂T (Q+ C1)d̂ < 0, d̂T (Q+ C2)d̂ < 0.(4.17)

The fact that x∗ is a global minimizer of (1.3) and (4.17) imply that either d̂TC1d̂ or

d̂TC2d̂ is not zero. Thus, we can choose λ 6= 0 ∈ < so that

c1(x∗ + λd̂) = 0, c2(x∗ + λd̂) ≤ 0(4.18)

or

c1(x∗ + λd̂) ≤ 0, c2(x∗ + λd̂) = 0.(4.19)

Without loss of generality, we assume that (4.18) is true; it then follows that

q(x∗ + λd̂)− q(x∗) = λ2d̂T (Q+ C1)d̂ < 0,(4.20)

which is a contradiction. Thus, (4.16) holds. Hence, our theorem follows from (4.16)
and Theorem 2.4.
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If β = 0, (4.5) holds for λ1 = λ2 = 0. The optimality of x∗ implies that dTQd ≥ 0
for all d such that dT∇c1(x∗) < 0. Since span{d : dT∇c1(x∗) < 0} = <n, it follows
that Q is positive semidefinite.

In what follows we will consider the case when ∇c2(x∗) = α∇c1(x∗) for some
α ≤ 0.

Theorem 4.5. Assume that x∗ is a global minimizer of problem (1.3) and that
c1(x) and c2(x) satisfy (1.11)–(1.12). If ∇c1(x∗) 6= 0 and ∇c2(x∗) = α∇c1(x∗) for
some α ≤ 0 and ∇q(x∗) = γ∇c1(x∗), then there exist λ1, λ2 ∈ <+ so that (4.5) holds
and Q+ λ1C1 + λ2C2 is positive semidefinite.

Proof. First, we consider the case when ∇c2(x∗) = α∇c1(x∗) for some α < 0.
Without loss of generality, we assume that ∇c1(x∗) = −∇c2(x∗) 6= 0 and γ ≤ 0. Now
we show that

max(xT (Q− γC1)x, xT (C1 + C2)x) ≥ 0 ∀x ∈ <n.(4.21)

Otherwise, we can choose d̂ ∈ <n such that

d̂T∇c1(x∗) < 0, d̂T (Q− γC1)d̂ < 0, d̂T (C1 + C2)d̂ < 0.(4.22)

If d̂TC1d̂ = 0, then d̂TQd̂ < 0, d̂TC2d̂ < 0. We can let λ ∈ <+ sufficiently large so
that λd̂ is feasible and q(x∗+λd̂)− q(x∗) < 0, which is a contradiction. If d̂TC1d̂ 6= 0,
we can choose λ ∈ < so that

c1(x∗ + λd̂) = 0, c2(x∗ + λd̂) < 0.(4.23)

It follows that

(4.24)

q(x∗ + λd̂)− γc1(x∗ + λd̂)− q(x∗) = q(x∗ + λd̂)− q(x∗) = λ2d̂T (Q− γC1)d̂ < 0,

which is a contradiction. Thus, (4.21) holds. Since conditions (1.11)–(1.12) imply
that C1 + C2 cannot be positive semidefinite, our theorem follows from (4.21) and
Theorem 2.4.

Now we turn to the case when ∇c2(x∗) = 0. The assumptions in our theorem
imply that ∇q(x∗) = γ∇c1(x∗) for some γ ≤ 0. By a similar process, we can show
that

max(xT (Q− γC1)x, xTC2x) ≥ 0 ∀x ∈ <n,(4.25)

which means that our theorem still holds when ∇c2(x∗) = 0.
In the above two theorems, we have discussed optimal properties of the Hessian of

a generalized Lagrangian functions when ∇c1(x∗) and ∇c2(x∗) are linearly dependent
and ∇q(x∗) ∈ span{∇c1(x∗)}. But if ∇q(x∗) 6∈ span{∇c1(x∗)}, then the Kuhn–
Tucker theory and (4.5) fail. In this case, we need to assume that x∗ is a unique
solution to continue our analysis.

Theorem 4.6. Assume that x∗ is a unique global minimizer of problem (1.3) and
that c1(x) and c2(x) satisfy (1.11)–(1.12). If ∇c1(x∗) 6= 0 and ∇c2(x∗) = −α∇c1(x∗)
for some α ≥ 0 and if ∇q(x∗) and ∇c1(x∗) are linearly independent, then there exist
λ1, λ2 ∈ < such that Q+ λ1C1 + λ2C2 has at least n− 1 positive eigenvalues.

Proof. Let W be defined by (4.3). It follows from the definition of x∗ that y∗ = 0
is the unique solution of the following problem:

min{xTQx+ xT∇q(x∗) : xTC1x ≤ 0, xTC2x ≤ 0, x ∈W}.(4.26)
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We now show that

max(xTC1x, x
TC2x) ≥ 0 ∀x ∈W.(4.27)

Otherwise, there exists x ∈W such that

xTC1x < 0, xTC2x < 0.(4.28)

Without loss of generality, we assume that xT∇q(x∗) ≤ 0. Therefore, we can choose
sufficiently small ε > 0 such that

x̄T∇q(x∗) < 0, x̄TC1x̄ ≤ 0, x̄TC2x̄ ≤ 0, x̄ = x− ε∇q(x∗),(4.29)

which contradicts the basic assumptions of the theorem. Thus, (4.27) is true. It
follows from Theorem 3.12 that there exist λ1, λ2 ∈ < such that Q+ λ1C1 + λ2C2 is
positive definite in W . This proves our theorem.

5. Discussion. We have shown that the Hessian of the Lagrangian at the solu-
tion of problem (1.3) has at most only one negative eigenvalue if the Jacobian of the
constraints is not zero. For some special cases, it is shown that the Hessian is positive
semidefinite or definite. We have also derived some relations between matrix pencils
and optimality. The necessary conditions given in the paper are stronger than the
standard second order necessary condition, which says the Hessian is positive semidef-
inite in the null space of the constraint gradients. It is pointed out that the necessary
conditions obtained are not sufficient conditions for optimality. It is interesting to
investigate whether there are sufficient conditions that are weaker than the standard
second order sufficient condition, which requires the Hessian of the Lagrangian to be
positive definite at the null space of the constraint gradients. We believe that our
theoretical results will help us to understand problem (1.3) better; they also will be
useful for development of numerical algorithms for trust region subproblems.
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