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1. Introduction

In scientific and engineering computing, it is a key matter to solve nonlinear operator

equations

F (x) = y (1)

numerically in a stable way, where x is the unknown, y is the given data or observations

and F : D(F ) ⊂ X −→ Y is a nonlinear operator, X and Y are both Hilbert spaces. A

typical example is the following nonlinear Fredholm integral equation of the first kind

F (x)(t) =

∫ b

a

k(t, s, x(s))ds = y(t), s ∈ [a, b], x ∈ X, (2)

where k is a nonlinear kernel about x.

Problem (1) is said to be well-posed if: (1) for any data y ∈ Y , there exists a solution

x ∈ X such that F (x) = y; (2) the solution x is unique; and (3) the solution x is stable

with respect to perturbations in y. However, these conditions are not necessarily to be

satisfied in general, which is known as ill-posed problems. For instance, neither condition

(1) nor condition (2) holds if F does not have closed range. Also it is well known that if

x is uniquely determined by y, the mapping y → x may still lack continuity. This gives

severe numerical trouble especially when the given data yδ are noisy,

‖yδ − y‖ ≤ δ. (3)

Therefore, for ill-posed problems, regularization method needs to be used to obtain

reasonable approximations to the solution x of the equation (1).

After using regularization methods, the ill-posed problem is replaced by a stabilized

problem (see [13, 4, 6, 16]). In particular, one solves the following unconstrained

optimization problem

min
x∈X

Jα[x, y] := ‖F (x)− yδ‖2 + α Ω(x), (4)

where α > 0 is called the regularization parameter, Ω(x) serves as the stabilizer which

stabilizes the minimization process and also provides a priori information about the

solution. The above method is known as the Tikhonov regularization. The typical

selection of the stabilizer is Ω(x) = ‖x‖2. In this case, the solution xα satisfies the first

order necessary condition

F ′(xα)∗(F (xα)− yδ) + αxα = 0, (5)

but the above problem is still not suitable for numerical computation in general. The

numerical solution of the minimization problem (4) requires the linearization of the

function F (x). This can be done by Taylor’s expansion of F (x) at the k-th iteration

point xk, thus the minimization problem becomes

min
ξ∈X

Jα[ξ, y] := ‖yδ − F (xk)− F ′(xk)ξ‖2 + αΩ(ξ), (6)

where ξ is the search direction, by proper choice of the parameter α, the new iteration

point can be calculated by xk+1 = xk + ξk. To be simple, in the following, we assume
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that Ω(·) = ‖ · ‖2. The equation (6) can be solved through the first order necessary

condition

(F ′(xk)
∗F ′(xk) + αI)ξ = F ′(xk)

∗(yδ − F (xk)). (7)

This equation is known as the Euler equation, which is the regularization of the linear

equation

F ′(xk)ξ = yδ − F (xk). (8)

The key matter in the equation (7) is the choice of the regularization parameter α. If

α is chosen properly, the problem (7) is well-posed, see, e.g., [4, 13]. However, α often

has to be chosen a posteriori, and iterative methods for its determination has to be

applied. Sometimes, it is difficult to find a posteriori criterion, say, the problems in

remote sensing due to too much uncertainty. In such cases, we have to resort to other

methods.

Apart from Tikhonov regularization method, Levenberg-Marquardt method is

another stable method for solving nonlinear operator equations. Recently, this method

has also been applied for solving inverse ground water filtration problem and has

been proved to be a regularization when the Levenberg-Marquardt parameter satisfies

Morozov’s discrepancy principle (see [8]).

Trust region methods have been widely used for solving nonlinear problems.

Levenberg-Marquardt method can be considered as a special case of trust region

method. But trust region methods are more direct in practical computation. In trust

region method, one adjusts the trust region radius instead of adjusting the Levenberg-

Marquardt parameter. Trust region method is usually generated in the following way:

first, we form the minimal least squares problem

min
x∈X

J(x) :=
1

2
‖F (x)− yδ‖2. (9)

Then at each iteration a trial step is calculated by solving the subproblem

min
ξ∈X

ψk(ξ) := (grad(J)k, ξ) +
1

2
(Hess(J)kξ, ξ), (10)

s. t. ‖ξ‖ ≤ ∆k, (11)

where grad(J)k is the gradient of J at the k-th iterate,

grad(J)(x) = F ′(x)∗(F (x)− yδ), (12)

Hess(J)k is the Hessian of J at the k-th iterate,

Hess(J)(x) = F ′(x)∗F ′(x) + F ′′(x)∗(F (x)− yδ), (13)

and ∆k is the trust region radius. The trust region subproblem (TRS) (10)-(11) is an

approximation to the original optimization problem (9) with a trust region constraint

which prevents the trial step being too large.

In many cases, the second term of (13) is difficult to compute or the computation

is too costly. The easiest way is ignoring the second term. For Gauss-Newton method,

we solve the following problem at k-th iteration
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F ′(xk)
∗F ′(xk)ξ = −F ′(xk)

∗(F (xk)− yδ),

xk+1 = xk + ξ.

While for Levenberg-Marquardt method, we solve the following problem at k-th iteration

(F ′(xk)
∗F ′(xk) + αkI)ξ = −F ′(xk)

∗(F (xk)− yδ),

xk+1 = xk + ξ,

and adjust the Levenberg-Marquardt parameter αk in an

appropriate way.

For ill-posed problems, a way of adjusting αk is by Morozov’s posteriori discrepancy

principle, say [4, 6, 8]. Another way is by trust region methods (see Section 2 and

Section 4 of this paper for details). In [8], The author also made tests to compare the

two kinds of parameter selection methods. It was concluded that both methods could

generate comparable results. However, the author further pointed out that, “whether

the standard trust region implementations of the Levenberg-Marquardt iterations are

also a regularization remains a very interesting open problem.” Some concerns about

the design of suitable stopping rule are also included in that paper. This open problem is

first addressed in [4]. We will solve the open problem proposed in [4, 8]. Particularly, we

give a positive answer that the standard trust region methods are indeed a regularization.

Now, we give a detail interpretation of the standard trust region method. When

introducing the Gauss-Newton and Levenberg-Marquardt methods, we ignore the second

term of (13). Accordingly, in the trust region method, the second term of (13) is also

ignored. Thus the trust region subproblem (TRS) can be formulated as follows:

min
ξ∈X

ψ̃k(ξ) := (grad(J)k, ξ) +
1

2
(H̃ess(J)kξ, ξ), (14)

s. t. ‖ξ‖ ≤ ∆k, (15)

where

H̃ess(J)(xk) = F ′(xk)
∗F ′(xk). (16)

The trust region algorithm considered in the paper is based on the minimization

process TRS (14)-(15). A trust region algorithm generates a new point which lies in

the trust region, and then decides whether it accepts the new point or rejects it. At

each iteration, the trial step ξk is normally calculated by solving the “trust region

subproblem” (14)–(15). Here ∆k > 0 is a trust region radius. Generally, a trust region

algorithm uses

rk =
Aredk

Predk

(17)
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to decide whether the trial step ξk is acceptable and how the next trust region radius is

chosen, where

Predk = ψ̃k(0)− ψ̃k(ξk) (18)

is the predicted reduction in the approximate model, and

Aredk = J(xk)− J(xk + ξk) (19)

is the actual reduction in the objective functional.

Now we give the trust region algorithm for solving nonlinear ill-posed problems.

Algorithm 1.1 (Trust region algorithm for nonlinear ill-posed problems)

STEP 1 Choose parameters 0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1, τ2 > 0 and

initial values x0, ∆0 > 0; Set k := 1.

STEP 2 If the stopping rule is satisfied then STOP; Else, solve (14)–(15) to

give ξk.

STEP 3 Compute rk;

xk+1 =

{
xk if rk ≤ τ0,

xk + ξk otherwise.
(20)

Choose ∆k+1 that satisfies

∆k+1 ∈
{

[τ3‖ξk‖, τ4∆k] if rk < τ2,

[∆k, τ1∆k] otherwise.
(21)

STEP 4 Evaluate grad(J)k and H̃ess(J)k; k:=k+1; GOTO STEP 2.

In STEP 2, the stopping rule is based on the discrepancy principle which will be

addressed in section 3. The detail implementation of STEP 2 will be explained in section

4.

The constants τi (i = 0, · · · , 4) can be chosen by users. Typical values are

τ0 = 0, τ1 = 2, τ2 = τ3 = 0.25, τ4 = 0.5. The parameter τ0 is usually zero or a

small positive constant. The advantage of using zero τ0 is that a trial step is accepted

whenever the objective function is reduced. When the objective function is not easy to

compute, it seems that we should not throw away any “good” point that reduces the

objective function (see [17] for details).

For subproblem (14)-(15), we have the following properties (see [9, 12]):

Lemma 1.2 A vector ξ∗ ∈ X is a solution to (14)-(15) if and only if there exists α∗ ≥ 0

such that

(H̃ess(J)k + α∗I)ξ∗ = −grad(J)k (22)

and that H̃ess(J) + α∗I is positive semi-definite, ‖ξ∗‖ ≤ ∆k and

α∗(∆k − ‖ξ∗‖) = 0. (23)
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From Lemmas 1.2, we see if H̃ess(J)+α∗I is positive definite, ξ∗ is uniquely defined

by

ξ∗ = −(H̃ess(J) + α∗I)−1grad(J). (24)

To emphasize the fact that ξ is dependent on the parameter α, we write

ξ(α) = −(H̃ess(J) + αI)−1grad(J). (25)

The following property has been established in [19, 5]:

Proposition 1.3 If H̃ess(J)+αI is positive definite, then ‖ξ(α)‖ is strictly decreasing

as α increases.

The choice of the trust region method for the solution of problem (1) is motivated

by the characteristics of many application problems, such as inverse gravimetry problem

(see section 5), parameter identification problem (see [15]) and so on, i.e., the ill-

posedness of these kind of problems. The global convergence of trust region methods

for well-posed unconstrained problems is well established, see, e.g., [5, 19]. The purpose

of this paper is to investigate the convergence and regularity of the trust region method

for nonlinear ill-posed problems, meanwhile, the TRS is solved through (14)-(15).

It is worthwhile to note that in [14], the author proposed a constrained least squares

regularization method for solving nonlinear ill-posed problems. This is perhaps, the first

paper to combine trust region algorithms with the regularization of ill-posed problems.

Instead of the Tikhonov regularization (4), the author first forms a constrained least

squares errors (LSE) problems

min
x∈X

J(x) :=
1

2
‖F (x)− yδ‖2,

s. t. c(x) ≤ β2,

where β is the regularization parameter, c(x) is a penalty functional whose purpose is

to stabilize the minimization and provide an apriori information about the solution,

hence is called the “regularization constraint”. Then under six assumptions (A1)-

(A6) (see [14]), the author proves the local convergence of the constrained LSE.

For the numerical solution of the constrained LSE, the author first applies a Gauss-

Newton approximation to the objective functional f(x) := ‖F (x)− yδ‖2 and obtains a

quadratic approximation to f(x); then retaining the quadratic regularization constraint

and imposing an additional quadratic trust region constraint, the author employs the

singular value decomposition to find the solutions of the trust region subproblem.

Actually, the author only combines trust region algorithms in the numerical test and does

not consider the regularization of the trust region algorithms. Moreover, the formulation

of the trust region subproblem is not classical because of the imposed regularization

constraint.

Let us denote x+ a solution of (1), ξ+
k = x+ − xk the difference between the true

solution and the iterate xk, and suppose F is Fréchet differentiable. We recall a widely

used assumption for analysis of the nonlinear ill-posed problems,
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Assumption 1.4 For a certain ball B ⊂ D(F ) around the exact solution x+ of equation

(1) and some 1 > d > 0, F satisfies the local property

‖F (x)− F (x̂)− F ′(x̂)(x− x̂)‖ ≤ d‖F (x)− F (x̂)‖ (26)

for all x, x̂ ∈ B.

If we replace x by x+, x̂ by xk in(26), then we obtain

‖y − F (xk)− F ′(xk)ξ
+
k ‖ ≤ d‖y − F (xk)‖, 0 < d < 1. (27)

The above condition is strong enough to ensure at least local convergence of the iterates

to a solution x of (1) in B, cf. Section 2.

Usually, when we deal with nonlinear problem, we also assume that the Lipschitz

conditions to F ′ is satisfied, i.e.,

‖F ′(u)− F ′(x̂)‖ ≤ d̂‖u− x̂‖.
This yields the usual Fréchet estimate

‖F (x)− F (x̂)− F ′(x̂)(x− x̂)‖ ≤ d̂

2
‖x− x̂‖2. (28)

For ill-posed problems, (28) provides little information about the local behavior of F

around x, because the left-hand side of (28) can be significantly smaller than the right-

hand side even for arbitrarily small ‖x − x̂‖. For example, fix x ∈ D(F ) and assume

that F is continuous and compact, then F ′(x) is compact. Hence, for every sequence

{x̂k} with ‖x̂k − x‖ = ε (ε is arbitrarily small) for all k ∈ N, the left-hand side of (28)

tends to 0 as k →∞ whereas the right-hand side remains d̂
2
ε2 for all k. Now it is clear

that Assumption 1.4 comes from the remedy of the situation induced by (28). More

detailed interpretation and several examples fulfilling it can be found in [2, 7]. In their

papers, the constant d is restricted to (0, 1
2
) for the analysis of the convergence of the

nonlinear Landweber iteration. This assumption is helpful for analyzing the properties

of the trust region algorithm which is presented in this paper.

The paper is organized as follows: in section 2, we analyze the convergence

properties of the trust region algorithm when applying to ill-posed inverse problems;

in section 3, the regularity of the trust region algorithm is proved; in section 4, the

numerical implementation for discrete problems is discussed; in section 5, we use trust

region algorithm for solving inverse gravimetry problem; finally in section 6, some

concluding remarks are presented.

2. Convergence properties for exact data

For simplicity, we introduce some notations in the situation that the exact data are

given. We denote

Tk = F ′(xk), gk = −F ′(xk)
∗(y − F (xk))

for the exact data, and

ξk,αk
= −(T ∗

k Tk + αkI)−1gk (29)
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as the trial step in each iteration. Then at k-th step, we solve (29) to get the step ξk,αk
.

If ξk,αk
is a solution of the equations (22) and (23), then there is a unique αk > 0

that satisfies (22) and (23). From (29), the parameter αk > 0 satisfies

‖ξk,αk
‖ = ∆k, (30)

i.e.,

‖(T ∗
k Tk + αkI)−1gk‖ = ∆k. (31)

Denote the residual (or the discrepancy) y − F (xk) by resk. Note that

Tk(T
∗
k Tk + αkI)−1T ∗

k = TkT
∗
k (TkT

∗
k + αkI)−1,

(TkT
∗
k + αkI)[I − TkT

∗
k (TkT

∗
k + αkI)−1] = αkI,

we have

resk − Tkξk,αk
= resk − Tk(T

∗
k Tk + αkI)−1T ∗

k resk

= resk − TkT
∗
k (TkT

∗
k + αkI)−1resk

= αk(TkT
∗
k + αkI)−1resk. (32)

By spectral analysis,

‖(TkT
∗
k + αkI)−1‖ ≤ 1

αk

.

Therefore,

‖resk − Tkξk,αk
‖ = αk‖(TkT

∗
k + αkI)−1resk‖ ≤ ‖resk‖. (33)

For ill-posed problems, the norm of the discrepancy, i.e., ‖y − F (xk)‖, is widely

used to determine whether the iteration process should be carrying on or not ([4, 6]).

For the iteration process of the trust region algorithm for exact data case, we use the

stopping rule as follows:

If ‖y − F (xk)‖ ≤ ε (the tolerance), then the iteration process is terminated.

According to the local property of the functional F (x), if x+, xk ∈ B, then the inequality

(27) is satisfied. Therefore it is reasonable to assume that before the stopping rule is

satisfied, the following inequality

‖y − F (xk)− F ′(xk)ξk,αk
‖ ≥ c1‖y − F (xk)‖. (34)

holds for c1 ∈ (d, 1). Thus combining (34) with (33) we conclude that

c1‖resk‖ ≤ ‖resk − Tkξk,αk
‖ ≤ ‖resk‖.

In the following results, we show that xk + ξk,αk
is a better approximation of x+

than xk, while its proof is similar to the one of Proposition 2.1 in [8].

Theorem 2.1 Assume that Assumption 1.4 holds and TkT
∗
k + αkI is positive definite.

Then

‖x+−xk‖2−‖x+−(xk+ξk,αk
)‖2 > 2(c1−d)‖(TkT

∗
k +αkI)−1resk‖‖resk‖.(35)
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Proof. From (32) it follows that

‖ξk,αk
− ξ+

k ‖2 = ‖ξk,αk
‖2 − 2(ξk,αk

, ξ+
k ) + ‖ξ+

k ‖2

= (resk, TkT
∗
k (TkT

∗
k + αkI)−2resk)

− 2((TkT
∗
k + αkI)−1resk, Tkξ

+
k ) + ‖ξ+

k ‖2

= − (resk, TkT
∗
k (TkT

∗
k + αkI)−2resk)

+ 2((TkT
∗
k + αkI)−1resk, resk − Tkξ

+
k )

− 2αk(resk, (TkT
∗
k + αkI)−2resk) + ‖ξ+

k ‖2.

Thus we obtain

‖ξ+
k ‖2 − ‖ξk,αk

− ξ+
k ‖2 = (resk, TkT

∗
k (TkT

∗
k + αkI)−2resk)

+ 2αk(resk, (TkT
∗
k + αkI)−2resk)

− 2((TkT
∗
k + αkI)−1resk, resk − Tkξ

+
k ).

Recalling the assumption that TkT
∗
k + αkI is positive definite and noting that

(resk, TkT
∗
k (TkT

∗
k + αkI)−2resk) = ‖ξk,αk

‖2 > 0,

we have

‖ξ+
k ‖2 − ‖ξk,αk

− ξ+
k ‖2 > 2αk‖(TkT

∗
k + αkI)−1resk‖2

− 2‖(TkT
∗
k + αkI)−1resk‖‖resk − Tkξ

+
k ‖

= 2‖(TkT
∗
k + αkI)−1resk‖(αk‖(TkT

∗
k + αkI)−1resk‖

− ‖resk − Tkξ
+
k ‖). (36)

By (34),

αk‖(TkT
∗
k + αkI)−1resk‖ = ‖y − F (xk)− F ′(xk)ξk,αk

‖ ≥ c1‖resk‖, (37)

where c1 ∈ (d, 1). By Assumption 1.4 and (27), we obtain

‖resk − Tkξ
+
k ‖ ≤ d‖resk‖, 0 < d < 1. (38)

Combining (36), (37) and (38) yields

‖ξ+
k ‖2 − ‖ξk,αk

− ξ+
k ‖2 > 2(c1 − d)‖(TkT

∗
k + αkI)−1resk‖‖resk‖.

This completes the proof. ¤

The following lemma will indicate that the sequence {αk} generated in each iteration

is uniformly bounded.

Lemma 2.2 Let ∆k, gk and αk as in Algorithm 1.1. Then there exists a constant ω > 0

such that ∆k ≥ ω‖gk‖. Moreover, {αk} is uniformly bounded.

Proof. Suppose, on the contrary, that the first assertion is not true. Then

lim inf
k→∞

∆k

‖gk‖ = 0. (39)

By (21) and (39), there exists a subsequence {ki} such that

∆ki+1 < ∆ki
(40)
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and

∆ki

‖gki
‖ → 0 as i →∞. (41)

The limit property in (41) implies that

Predki
= ψki

(0)− ψki
(ξki

)

≥ ψki
(0)− ψki

(− ∆ki

‖gki
‖gki

)

= ∆ki
‖gki

‖+ O(∆2
ki

)

= ∆ki
‖gki

‖
(
1 + O

( ∆ki

‖gki
‖
))

. (42)

This, together with

Aredki
= Predki

+ O(∆2
ki

), (43)

yields that

rki
=

Aredki

Predki

→ 1 as i →∞. (44)

Therefore

∆ki+1 ≥ ∆ki
(45)

for all sufficiently large i, which contradicts (40). This proves that the first assertion is

true. By the first assertion, ‖gk‖
∆k

is bounded. This together with (31) leads to the second

assertion, the boundedness of the sequence {αk}. ¤

Theorem 2.3 Assume that Assumption 1.4 holds. Given the exact data y, the sequence

{xk} generated by trust region algorithm converge to a solution of F (x) = y as k →∞.

Proof. By Theorem 2.1, xk+1 = xk + ξk,αk
is a better approximation to the exact

solution x+ than xk,

‖xk+1 − x+‖ ≤ ‖xk − x+‖.
Thus ‖xk−x+‖, k ≥ 1 is monotonically decreasing sequence. Next we show the sequence

{xk} converges to a solution of F (x) = y, where we use the similar technique as in [4]

and [11]. In particular, we will show the iteration errors ek = x+ − xk, k ∈ N form a

Cauchy sequence.

Given k, l ∈ N with k > l, let j ∈ {l, · · · , k} be chosen so that

‖y − F (xj)‖ ≤ ‖y − F (xi)‖, i = l, · · · , k.

Now consider

‖ej − el‖2 = ‖el‖2 − ‖ej‖2 + 2(ej, ej − el), (46)

and denote wk = (TkT
∗
k + αkI)−1resk, where resk = yδ − F (xk). Then we have

ξk,αk
= T ∗

k wk,
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xk+1 = xk + ξk,αk
= · · · = x0 +

k∑
j=0

T ∗
j wj

and

xj − xl =

j−1∑

i=l

T ∗
i wi.

Note that

|(ej, ej − el)| = |
j−1∑

i=l

(ej, T
∗
i wi)| ≤

j−1∑

i=l

‖wi‖‖Tiej‖

and

‖Tiej‖ = ‖Tiei − Ti(xj − xi)‖
≤ ‖y − F (xi)− F ′(xi)ei‖+ ‖F (xj)− F (xi)− F ′(xi)(xj − xi)‖

+ ‖y − F (xj)‖
≤ d‖y − F (xi)‖+ d‖F (xj)− F (xi)‖+ ‖y − F (xj)‖
≤ 2d‖y − F (xi)‖+ (1 + d)‖y − F (xj)‖
≤ (1 + 3d)‖y − F (xi)‖,

where ei = x+ − xi. Then combining (35) with the above expression, we obtain

|(ej, ej − el)| ≤ (1 + 3d)

j−1∑

i=l

‖wi‖‖y − F (xi)‖

≤ 1 + 3d

2(c1 − d)
(‖x+ − xl‖2 − ‖x+ − xj‖2).

This, together with (46), yields

‖ej − el‖2 ≤ C(‖x+ − xl‖2 − ‖x+ − xj‖2),

where C = 1+c1+2d
c1−d

does not depend on j, k, l. Similarly we have

‖ej − ek‖2 ≤ C(‖x+ − xj‖2 − ‖x+ − xk‖2).

Hence,

‖xk − xl‖2 ≤ 2(‖xk − xj‖2 + ‖xj − xl‖2)

= 2(‖ek − ej‖2 + ‖ej − el‖2)

≤ 2C(‖x+ − xl‖2 − ‖x+ − xk‖2).

Recalling that the monotonicity of the iteration error ‖xk − x+‖, the right-hand side

goes to zero as k, l →∞, and hence {xk} is a Cauchy sequence.

Denote the limit of xk by x. Because

‖resk‖ ≤ ‖TkT
∗
k + αkI‖‖wk‖

= (‖Tk‖2 + αk)‖wk‖,
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and αk is uniformly bounded according to Lemma 2.2, we have

‖wk‖ ≥ 1

‖Tk‖2 + M
‖resk‖,

where M is the upper bound of αk. This proves that

‖y − F (xk)‖2 ≤ ‖Tk‖2 + M

2(c1 − d)
(‖x+ − xk‖2 − ‖x+ − xk+1‖2). (47)

Recalling that ‖Tk‖ is uniformly bounded, we obtain the convergence of
∑∞

i=0 ‖y −
F (xi)‖2 from the estimate (47). Therefore F (xk) → y as k →∞, and x is a solution of

F (x) = y. ¤

3. Regularity for inexact data

We assume that the r.h.s. y is contaminated by noise, i.e., instead of y, we may then

have a perturbed version yδ with error level δ such that

‖y − yδ‖ ≤ δ.

In this case, the solution of the ill-posed problem would be very sensitive to the small

perturbations in the r.h.s. y.

For Algorithm 1.1, the stopping rule we choose is the discrepancy principle (see

[4]), i.e., the iteration should be terminated at the first occurrence of the index k such

that

‖F (xδ
k)− yδ‖ ≤ τδ, (48)

where τ > 1 is the dominant parameter and can be chosen by users.

Now we consider the regularity of the trust region algorithm in the perturbed case.

Accordingly the corresponding iterates will be denoted by xδ
k. We also assume that k(δ)

is the smallest iteration index k such that the discrepancy inequality

‖yδ − F (xδ
k(δ))‖ ≤ τδ, τ > 1 (49)

holds.

Theorem 3.1 Assume that Assumption 1.4 holds and TkT
∗
k + αkI is positive definite.

Let τ in (49) is chosen such that τ > 1+d
1−d

. Let x+ be a solution of F (x) = y with F

satisfying (26) for some d > 0 in a ball B ⊂ D(F ) around x. Then the Algorithm 1.1

terminates after k(δ) < ∞ iterations. Moreover, for k = 0, 1, · · · , k(δ), ‖x+ − xδ
k‖ is

monotonically decreasing.

Proof. We will prove that

‖x+ − xδ
k+1‖ ≤ ‖x+ − xδ

k‖ (50)

with x+ a solution of F (x) = y. By Assumption 1.4, we can estimate that

‖yδ − F (xδ
k)− F ′(xδ

k)(x
+ − xδ

k)‖ ≤ δ + ‖F (x+)− F (xδ
k)− F ′(xδ

k)(x
+ − xδ

k)‖
≤ δ + d‖y − F (xδ

k)‖
≤ (1 + d)δ + d‖yδ − F (xδ

k)‖.
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Since ‖yδ − F (xδ
k)‖ > τδ as k < k(δ), hence

δ <
1

τ
‖yδ − F (xδ

k)‖
and

‖yδ − F (xδ
k)− F ′(xδ

k)(x
+ − xδ

k)‖ ≤
1 + d + τd

τ
‖yδ − F (xδ

k)‖.
By assumption, 0 < 1+d+τd

τ
< 1, hence (27) is fulfilled with y replaced by yδ and xk by

xδ
k. Consequently Theorem 2.1 applies and the monotonicity assertion (50) follows as

in the proof of Theorem 2.1.

Next we show that there are only finite number of iterations. In fact using same

arguments as in the proof of (47), we have

‖yδ − F (xδ
k)‖2 ≤ L

2(c1 − d)
(‖x+ − xδ

k‖2 − ‖x+ − xδ
k+1‖2) (51)

with L = sup{‖F ′(xδ
k)‖ + M} for all k < k(δ). By (50) and taking the sum of (51) for

k = 0, 1, · · · , k(δ)− 1, we obtain

k(δ)τ 2δ2 ≤
k(δ)−1∑

k=0

‖yδ − F (xδ
k)‖2 ≤ L

2(c1 − d)
‖x+ − x0‖2 < ∞.

This indicates that k(δ) is a finite number. ¤

Now, we consider the case xδ
k(δ) as δ → 0, and have the following result.

Theorem 3.2 If k(δ) = k for all δ sufficiently small, then xδ
k → xk for k(δ) = k as

δ → 0.

Proof. By continuity, if k(δ) = k for all δ > 0, then xδ
k → xk as δ → 0, where xk is

the k-th trust region iterate with exact right-hand side y. Since k(δ) = k, hence by the

discrepancy principle, F (xk) → y as δ → 0. Hence, xδ
k(δ) converges to the solution xk of

F (x) = y. ¤

With the above preparation, now we can prove that the trust region algorithm with

appropriate conditions is a regularization method.

Theorem 3.3 Assume that F satisfies (26) in some ball B ⊂ D(F ) and let yδ, xδ
k be

defined as before. Then the iterates xδ
k generated by algorithms 1.1 converge to a solution

of equation (1) as k →∞ and δ → 0.

Proof. From Theorem 2.3 we know that iterates xk converge to a solution of

F (x) = y. Combining this fact with Theorem 3.2, we find that iterates xδ
k converge

to a solution of F (x) = y for k = k(δ) as k →∞ and δ → 0.

Now, assume that k(δ) → ∞ as δ → 0, and denote x+ the limit of the iterates

xk. x+ is a solution of F (x) = y. It suffices to consider subsequences {k(δn)}n which

are monotonically increasing to infinity as n → ∞ and δn → 0. For example, consider

k(δm) > k(δn) for m > n. By the monotonicity of xδ
k (see (50)), we have

‖xδm

k(δm) − x+‖ ≤ ‖xδm

k(δn) − x+‖ ≤ ‖xδm

k(δn) − xk(δn)‖+ ‖xk(δn) − x+‖.
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Thus given a sufficiently small number ε > 0 and for some sufficiently large number n,

we have that ‖xk(δn) − x+‖ ≤ ε/2 by Theorem 2.3. On the other hand, for sufficiently

large number m and fixed n, ‖xδm

k(δn) − xk(δn)‖ ≤ ε/2 by Theorem 3.1. This proves that

‖xδm

k(δm) − x+‖ ≤ ε for all m sufficiently large, and thereafter xδm

k(δm) → x+ as m → ∞
and hence xδ

k → x+ as k →∞ and δ → 0. ¤

4. Numerical implementation

To numerically solve (9), the problem has to be discretized. Let Pn denote a projection

of X onto an n-dimensional subspace Xn, and Qm denote a projection of Y onto an

m-dimensional subspace Ym. Hence we can define Fmn the finite approximation to the

nonlinear operator F :

Fmn(x) := QmF (Pnx). (52)

Since F is differentiable, each Fmn is differentiable. For the discrete version (52), we

consider the minimal least squares problem in the form

min
x∈Xn

Jn(x) :=
1

2
‖Fmn(x)− ym‖2. (53)

In this case, at each iteration a trial step is calculated by solving the subproblem

min
ξ∈Xn

ψ̃k(ξ) := (grad(Jn)k, ξ) +
1

2
(H̃ess(Jn)kξ, ξ), (54)

s. t. ‖ξ‖ ≤ ∆k, (55)

in finite spaces Xn and Ym. Where, grad(Jn)(x) and H̃ess(Jn)(x) can be evaluated

respectively by

grad(Jn)(x) = F ′
mn(x)T (Fmn(x)− ym)

and

H̃ess(Jn)(x) = F ′
mn(x)T F ′

mn(x).

For simplicity, we use the same notation Tk for F ′
mn(xk) and gk for −F ′

mn(xk)
T (ym−

Fmn(xk)). Noticed in section 2, the parameter αk can be determined from the equation

(30) or (31). For solving the parameter αk, we apply Newton’s method to the nonlinear

equation

Γk(αk) :=
1

‖ξk,αk
‖ −

1

∆k

= 0. (56)

The reason for considering (56) instead of the simpler equation

‖ξk,αk
‖ = ∆k (57)

is that Γk(αk) is close to a linear function. Thus Newton’s method would give a faster

convergence. In fact the first order and second order derivatives of Γ(αk) can be easily

computed, hence Newton’s method can be used to calculate αk (see [17, 18] for details).

The iteration formula can be given as

α+ = αk − ‖ξk,αk
‖3

gT
k (T T

k Tk + αkI)−3gk

[ 1

‖ξk,αk
‖ −

1

∆k

]
. (58)
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The following algorithm (see [9]) updates αk by Newton’s method applied to (56).

Algorithm 4.1 (Newton’s method for computing αk)

Until ‖α+ − αk‖ ≤ tol do

STEP 1 Factor T T
k Tk + αkI = RT R.

STEP 2 Solve RT Rξk,αk
= −gk.

STEP 3 Solve RT w = ξk,αk
.

STEP 4 Let α+ := αk − (
‖ξk,αk

‖
‖w‖ )2(1− ‖ξk,αk

‖
‖∆k‖ ).

In this algorithm, RT R is the Cholesky factorization of matrix T T
k Tk + αkI with

R ∈ Rn×n upper triangular. It is necessary to safeguard αk in order to obtain a positive

definite T T
k Tk + αkI and guarantee convergence. This, in practice, can be satisfied by

observing the fact(see [10]) that the function Γk(αk) is concave and strictly increasing.

Hence if we choose the initial guess value αk > 0 such that Γk(αk) < 0 then at each

iteration, Newton algorithm generates a monotonically increasing sequence converging

to the solution of Γk(αk) = 0. The tol for choosing the final value of αk should be

in (0, 1). But for fast convergence, tol should not be chosen too small. We choose

tol = 0.001 in our test of the next section.

We also remark that for αk solved by Algorithm 4.1, T T
k Tk +αkI is positive definite

at each iteration. Hence the assumption that T ∗
k Tk + αkI is positive definite in sections

2 and 3 is reasonable.

Remark 4.2 The finite dimensional problem (53) can also be solved with any

standard nonlinear optimization package, such as those available on NEOS (www-

neos.mcs.anl.gov/neos/). To obtain the satisfactory results, we need to use the

regularization technique, such as, the regularized Gauss-Newton method (see [1]).

This is because the derivative operator F ′
mn(x) is a compact operator, hence the

finite dimensional problem is ill-posed. While for ill-posed problems, the nonlinear

optimization methods can not be used directly due to the noise and truncation error

propagation.

Remark 4.3 Applying trust algorithms to nonlinear ill-posed problems, we actually

need to implement two cycles of iterations: outer loop and inner loop. The outer

loop consists of updating the iterate xk and the trust region radius ∆k and evaluating

the gradient grad(Jn)k and Hessian H̃ess(Jn)k, the inner loop is seeking for a trial

step ξk and a regularization parameter αk by solving the TRS (54)-(55). The main

computational cost of the trust region algorithm is the solution of the TRS. In Algorithm

4.1, we perform Cholesky factorization on a symmetric matrix, which requires the

amount of computation O(1
6
n3). Solving for ξk,αk

and w, the amount of computation

is O(3n2). So the computational cost in each inner loop is O(1
6
n3 + 3n2). Assume

that there are kin inner iterations, then the total computational cost in inner loop

is O(1
6
kinn

3 + 3kinn
2). Note that for the inner loop, the gradient grad(Jn)k and
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Hessian H̃ess(Jn)k are used only once, which are pre-computed in the outer loop. It

requires matrix-matrix computation O(n3) for obtaining H̃ess(Jn)k and matrix-vector

computation O(n2) for obtaining grad(Jn)k. In Theorem 3.1, we have proved that the

trust region algorithm terminates after k(δ) < ∞ iterations. So the total computational

cost in outer loop is O(k(δ)n3 + k(δ)n2). Therefore, upon the convergence, the total

computational cost (inner loop plus outer loop) is O
(
(1

6
kin +k(δ))n3 +(3kin +k(δ))n2

)
.

This computational effort is acceptable in modern computers.

5. Numerical results

We take a well-known example appears in inverse gravimetry ([13]), which is in the form

of the nonlinear Fredholm integral equation of the first kind

F (x)(t) =

∫ b

a

k(t, s, x(s))ds = y(t), t ∈ [e, f ] (59)

with the kernel k(t, s, x(s)) = ln (t−s)2+H2

(t−s)2+(x(s)−H)2
, and y(t) is the measured term. This

numerical example is also considered in [14]. Clearly the kernel k is defined on the set

Π = {[e, f ]× [a, b]×R} and k(t, s, x(s)) ∈ C1(Π). The first derivative F ′(x) : X −→ Y

is given by

[F
′
(x)u](t) =

∫ b

a

∂k

∂x
(t, s, x(s))u(s)ds, t ∈ [e, f ], (60)

while the kernel ∂k
∂x

(t, s, x(s)) is evaluated by

∂k

∂x
(t, s, x(s)) =

2(H − x(s))

(t− s)2 + (x(s)−H)2
.

To numerically solve (59), we choose linearly independent basis functions {φj}n
j=1 ⊂

X = H1
0 (a, b) and take approximations x̂(s) =

∑n
j=1 xjφj(s), x = (x1, x2, · · · , xn)T ∈ Rn

and then reduce to a finite dimensional problem. The integral operator F gives rise to

an operator Fmn : Rn −→ Rm,

[Fmn(x)]i =

∫ b

a

k(ti, s, x̂(s))ds, 1 ≤ i ≤ m. (61)

Similarly the derivative operator F
′
(x) yields an m× n matrix:

[F
′
mn(x)]ij =

∫ b

a

∂k

∂x
(ti, s, x̂(s))φj(s)ds, 1 ≤ i ≤ m, 1 ≤ j ≤ n, (62)

where φj(s) is the standard linear basic functions

φj(s) =





s−sj−1

h
, if s ∈ [sj−1, sj],

sj+1−s

h
, if s ∈ [sj, sj+1],

0, else,

and, sj = jh, h = 1
n
, j = 1, 2, · · · , n. Then the integral (59) can be computed

numerically.
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We take [a, b] = [e, f ] = [0, 1], H = 0.1 and different m, n to give a discretization.

Our true function is xtrue(s) = 1.3s(1 − s) + 0.2, and it is discretized by evaluating it

at the points si to give the components xi of x. The right-hand side y is generated

by integral (59). To simulate the practical problems, the perturbed right-hand side is

chosen by

yδ = ytrue + δ ∗ rand(size(ytrue)), (63)

where rand(·) is the Gaussian white noise having same dimension as that of ytrue. The

numerical results are shown in the following figures 1, 2 and 3.

In section 3, in the process of proving the monotonicity of the iteration error

‖x+ − xδ
k‖, we let τ > 1+d

1−d
. Practically, τ > 1 can be chosen by users. In theory,

in order to make the approximation be better, τ should be chosen close to 1 (see [4]).

This means d should be close to 0.

First we choose: n = m = 30, τ = 1.4, ∆0 = 0.001, α0 = 0.01 with small

perturbation δ = 0.005. It needs 83 outer iterations and 300 inner iterations to generate

convergence. The discrepancy norm ‖yδ − F (xk=83)‖ is 0.0070 and the relative error

level ‖yδ−F (xk=83)‖
‖F (xk=83)‖ is 0.0014. The recorded total CPU time is 1.25 seconds. The solution

is shown in the left of figure 1, where, the solid line represents the true solution, the

dashed line represents the approximations. This interpretation will be used for other

two graphs in figure 1 too.

Then we choose n = m = 60, τ = 1.3, ∆0 = 0.001, α0 = 0.01 but with

perturbation δ = 0.01. It needs 20 outer iterations and 90 inner iterations to generate

convergence. The discrepancy norm ‖yδ − F (xk=20)‖ is 0.0112 and the relative error

level ‖yδ−F (xk=20)‖
‖F (xk=20)‖ is 0.0015. The recorded CPU time is 1.109 seconds. The graph of the

solution is shown in the middle of figure 1.

Finally we choose n = m = 100, ∆0 = 0.001, α0 = 0.01 with large perturbation

δ = 0.05 and τ = 1.2 to give a computation. It needs 18 outer iterations and 110 inner

iterations to generate convergence. The discrepancy norm ‖yδ−F (xk=18)‖ is 0.0540 and

the relative error level ‖yδ−F (xk=18)‖
‖F (xk=18)‖ is 0.0057. The recorded CPU time is 2.828 seconds.

The graph of the solution is shown in the right of figure 1.

From figure 1, we see that the computed results are satisfactory. The degree of

approximation depends on the mesh grid density and the noise level δ. It is true that

the discretized problem will be a better approximation to the original problem if the

discretization points are enormous, but it will be more ill-conditioned. Therefore, due to

the ill-posedness of the problem, we can not expect the computation results are totally

the same.

In our test, we also record the values of αk during each iteration. We find that the

values of αk are increasing in each loop of Algorithm 4.1, but in general it is decreasing.

This is true for our algorithms. The phenomena are shown in figure 2 and figure 3. In

which, from the left to the right, each of the figures is corresponding to the cases of

figure 1. In figure 2, all of the values of αk in each iteration are recorded; in figure 3,

only the last values of αk in each iteration are recorded. These values of αk can suppress
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Figure 1. Solutions of the inverse gravimetry problem. Solid line: the true solution,
xtrue; Dashed line: the approximate solution, xappr
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Figure 2. Parameters α generated by Algorithm 4.1

the small singular values of F ′
mn(xk) during each iteration, hence they also serve as the

regularization parameters.

In [14], the author chose another true solution to give a numerical simulation. The

true function is based on the linear combination of two Gaussians

xtrue(s) = c1 exp(d1(s− p1)
2) + c2 exp(d2(s− p2)

2) + c3s + c4,

where c1 = −0.1, c2 = −0.075, d1 = −40, d2 = −60, p1 = 0.4, p2 = 0.67, and c3, c4

are chosen so that x(0) = x(1) = 0. In the tests, the interval [a, b] = [e, f ] = [0, 1], H =

0.2 and the mesh grid numbers are 26. We give a plot of the simulation results in figure

4 by our algorithms for the given parameters ∆0 = 0.001, α0 = 0.01 with perturbation

δ = 0.005 and τ = 1.01. It needs 24 outer iterations and 135 inner iterations to generate

convergence. The discrepancy norm ‖yδ − F (xk=24)‖ is 0.0042 and the relative error

level ‖yδ−F (xk=24)‖
‖F (xk=24)‖ is 0.0040. The recorded CPU time is 0.359 seconds. The behavior of

the regularization parameters α is similar to the one in the former test. It seems that

our algorithms generate comparable results.

We should point out that in both tests, we add another stopping rule, i.e., if

Pred ≤ ε (ε is the tolerance) then the iteration should also be terminated. Here, the

tolerance ε is chosen as 1.0e − 7. However, Pred ≤ ε is never activated. In fact, if

we use Pred ≤ ε as the stopping rule, it will need many iterations. In such case, the

reconstruction results are not very reasonable. Perhaps choosing a smaller ε will work

better.
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Figure 3. Last values of parameters α in each iteration
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Figure 4. Solutions of the inverse gravimetry problem. Left: Solid line, the
negative true solution, −xtrue; Dashed line, the approximate solution, −xappr. Middle:
Parameters α generated by Algorithm 4.1. Right: Last values of parameters α in each
iteration

6. Conclusion

We establish the convergence and regularity of the trust region method for nonlinear ill-

posed inverse problems. The results obtained in this paper are based on the choice

of the approximate Hessian H̃ess(x) = F ′(x)T F ′(x) instead of the exact Hessian

Hess(x) = F ′(x)T F ′(x) + F ′′(x)T (F (x) − y). For the later, we have not gotten such

kind of results so far. We conjecture that trust region algorithm with the exact Hessian

is also a regularization algorithm provided that some stronger conditions are imposed.

However, it is unreasonable to use exact Hessian in practice due to the hardness of

computing the exact Hessian Hess(x) and the huge expense on it. We can use some

other techniques, for instance, in each iteration, F ′′(xk) is replaced by Bk, where Bk

satisfies the quasi-Newton conditions (see [3] ), but the regularity of such an algorithm

is not so clear up to now.
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