
Numer. Math. (2006) 104: 241–269
DOI 10.1007/s00211-006-0021-6 Numerische

Mathematik

Zhou-Hong Wang · Ya-Xiang Yuan

A subspace implementation of quasi-Newton
trust region methods for unconstrained
optimization

Received: 5 January 2005 / Revised: 22 December 2005 / Published online: 18 July 2006
© Springer-Verlag 2006

Abstract This paper studies subspace properties of trust region methods for uncon-
strained optimization, assuming the approximate Hessian is updated by quasi-
Newton formulae and the initial Hessian approximation is appropriately chosen.
It is shown that the trial step obtained by solving the trust region subproblem is
in the subspace spanned by all the gradient vectors computed. Thus, the trial step
can be defined by minimizing the quasi-Newton quadratic model in the subspace.
Based on this observation, some subspace trust region algorithms are proposed and
numerical results are also reported.

Mathematics Subject Classification (2000) 65K05 · 90C53

1 Introduction

Consider the general unconstrained optimization problem

min
x∈�n

f (x), (1)

where f (x) is a continuously differentiable function defined in �n . Trust region
methods for the unconstrained optimization problem 1 compute a trial step in each
iteration. Such a trial step is required to be within a “trust region”, which is a

Z.-H. Wang (B) · Y.-X. Yuan
State Key Laboratory of Scientific and Engineering Computing, Institute of Computational
Mathematics and Scientific/Engineering Computing, Chinese Academy of Sciences,
Beijing 100080, People’s Republic of China
E-mail: wangzhh@bjtu.edu.cn
E-mail: yyx@lsec.cc.ac.cn

Z.-H. Wang
Department of Mathematics, Beijing Jiaotong University, Beijing 100044,
People’s Republic of China

242 Z.-H. Wang, Y.-X. Yuan

region near the current iterate point. Different choices of trust regions and different
models give different trust region algorithms. The most commonly used model is
the quadratic one, which gives the following trust region subproblem:

min
s∈�n

φk(s) ≡ gT
k s + 1

2
sT Bks (2)

s. t.‖s‖ ≤ �k, (3)

where ‖·‖ is the Euclidean norm, gk = g(xk) ≡ ∇ f (xk) is the gradient of the objec-
tive function at the current iterate xk , Bk is an approximate Hessian, and �k > 0 is
the trust region radius. In practice, Bk is updated by using quasi-Newton formulae.
More detailed discussions on trust region algorithms can be found in Dennis and
Schnabel [8], Fletcher [10], Conn, et al. [5] and Yuan [30]. The following is a
description of a model trust region algorithm for unconstrained optimization.

Algorithm 1 (A Model Trust Region Algorithm)

Step 1. Given x1 ∈ �n , �1 > 0, 0 < τ3 < τ4 < 1 < τ1, 0 ≤ τ0 ≤ τ2 < 1,
τ2 > 0, ε ≥ 0, k := 1.

Step 2. Solve Eqs. (2) and (3) approximately to get a solution sk . If ‖sk‖ ≤ ε then
stop.

Step 3. Compute

ηk = Aredk

Predk
= f (xk) − f (xk + sk)

φk(0) − φk(sk)
. (4)

Step 4. Set

xk+1 =
{

xk + sk, if ηk > τ0,
xk, otherwise. (5)

Choose �k+1 that satisfies

�k+1 =
{ [τ3‖sk‖, τ4�k], i f ηk < τ2,

[�k, τ1�k], otherwise.
(6)

Step 5. Update Bk+1. Set k := k + 1 and go to Step 2.

In this paper, we study the case when the matrix Bk is updated by quasi-Newton
methods, namely Bk+1 is generated by adding a modification to Bk and satisfies
the quasi-Newton equation

Bk+1sk = yk = g(xk + sk) − g(xk) ≡ gk+1 − gk . (7)

When the number of variables is very large, it could be very costly to solve Eqs.
(2) and (3) exactly. Therefore, various methods for calculating an approximate
solution of Eqs. (2) and (3) have been developed, such as the dogleg [18,19] and
double dogleg techniques [7], the truncated CG method [25,31], two-dimensional
subspaces minimization method [2], subspace CG methods [27] and subspace-iter-
ated methods [3], etc. How to solve the subproblem 2 and 3 as exactly as possible in
an acceptable effort is still a problem worth studying. It is Siegel [22] who first pro-
posed to implement Broyden class updates in a sequence of expanding subspace.
Gill and Leonard [12] developed a practical reduced Hessian method based on

A subspace implementation of trust region methods 243

[22], where the technique of combining lingering with reinitialization is proposed.
All these subspace methods are line search methods, and require the approximate
Hessian matrix Bk to be positive definite. Motivated by these results, we explore
the subspace properties of trust region methods when the approximate Hessian is
updated by quasi-Newton formulae. It is found that the trial step sk defined by the
trust region subproblem is also always in the subspace spanned by g1, g2, . . . , gk ,
even when Bk is not positive definite. Therefore, it is equivalent to solve the trust
region subproblem within this subspace. Based on this observation, we can solve a
smaller trust region subproblem exactly in early iterations of the algorithm, which
would reduce the computations significantly for some large-scale problems, where
the dimension of the subspace spanned by g1, g2, . . . , gk remains far less than the
number of variables n.

The paper is organized as follows. The equivalence of the trust region subprob-
lem and that in the subspace is proved in the next section. In Sect. 3, two subspace
quasi-Newton trust region algorithms are proposed and their convergence prop-
erties are analyzed. Numerical results on problems in CUTEr see [1] and [14]
are reported in Sect. 4, where both the BFGS and the SR1 updating formulae are
used. The purpose of this paper is to show that subspace techniques can be used
to improve the performance of trust region methods, and we do not compare our
algorithms with line search subspace methods.

2 Subspace properties of the trial step

In this section, we study the subspace properties of the trial step sk at the k th iter-
ation, which is assumed to be the solution of the trust region subproblem 2 and 3.
The following Lemma, about the trial step sk , can be found in Gay [11] and Soren-
sen [24].

Lemma 2.1 The vector sk ∈ �n is a global solution of Eqs.(2) and (3) if and only
if ‖sk‖ ≤ �k and there exists a scalar λk ≥ 0 such that Bk + λk I is positive
semi-definite and

(Bk + λk I)sk = −gk, (8)

λk(�k − ‖sk‖) = 0. (9)

Consider a special case when Bk is a two by two block diagonal matrix having
the form

Bk =
[

Bk(1 :r, 1 :r) 0
0 σ I

]
(10)

where Bk(1 : r, 1 : r) is the r th leading submatrix of Bk (see, e.g., Golub and
Van Loan [13] for the notation). From Eqs. (8) and (10), it is easy to see that
sk(r + 1 : n) (the last n − r components of sk) are all zero if gk(r + 1 : n) = 0.
This simple example indicates that if Bk has certain structure, the trial step will
be always in a subspace. In the above example, the subspace is spanned by the
first r coordinate vectors ei (i = 1, . . . , r). A similar result is also true for other
subspaces. Let Gk = Span{g1, g2, . . . , gk}. If Bk is obtained by Broyden updates
and Bk + λk I is positive definite in Algorithm 1, we would have sk ∈ Gk , which
follows immediately from Eq. (8) and the theory on line search methods, see, e.g.

244 Z.-H. Wang, Y.-X. Yuan

[12,22,28]. The main difficulty in using the subspace techniques for trust region
methods lies in the “hard case”, where Bk + λk I is not invertible. Let ν1 be the
smallest eigenvalue of Bk , V1 = {x ∈ �n | Bk x = ν1x}. Then in “hard case” we
have gk ∈ V ⊥

1 and the solution sk of Eqs. (2) and (3) satisfies (see, e.g. Conn et al.
[5] and Sorensen [24])

sk = −(Bk + λk I)+gk + θq

where (+) denotes the Moore–Penrose generalized matrix inverse, q ∈ V1, ‖Bk +
λk I)+gk‖ < �k and θ > 0. In this case it is not easy to see whether sk ∈ Gk . In fact
the result is still true for trust region methods and we describe it in the following
Lemma.

Lemma 2.2 Let Sk be an r (1 ≤ r ≤ n) dimensional subspace in �n, and Zk ∈
�n×r is an orthonormal basis matrix of Sk, namely

Sk = Span{Zk}, Z T
k Zk = Ir . (11)

Suppose that gk ∈ Sk and Bk is a symmetric matrix satisfying

Bk z ∈ Sk, ∀ z ∈ Sk, (12)

Bku = σu, ∀ u ∈ S⊥
k , (13)

where σ > 0 is a positive number. Then problem Eqs. (2) and (3) is equivalent to
the following problem

min
s̄∈�r

φ̄k(s̄) ≡ ḡT
k s̄ + 1

2
s̄T B̄k s̄ (14)

s. t.‖s̄‖ ≤ �k, (15)

where ḡk = Z T
k gk and B̄k = Z T

k Bk Zk. That is to say, if sk is a solution of Eqs.
(2) and (3), then s̄k = Z T

k sk is a solution of Eqs. (14) and (15) and we have
sk = Zks̄k ∈ Sk. On the other hand, if s̄k is a solution of Eqs. (14) and (15), then
sk = Zks̄k must be a solution of Eqs. (2) and (3).

Proof Let Uk ∈ �n×(n−r) be a matrix such that [Uk, Zk] is an n × n orthogonal
matrix. Then for each s ∈ �n , there exists one and only one pair s̄ ∈ �r , u ∈ �n−r

such that s = Zks̄ + Uku. Thus, it follows that

φk(s) = gT
k s + 1

2
sT Bks = gT

Z s̄ + gT
U u

+1

2
s̄T Z T

k Bk Zk s̄ + 1

2
uT U T

k BkUku + s̄T Z T
k BkUku, (16)

where gZ = Z T
k gk, gU = U T

k gk . By gk ∈ Span{Zk} and Eqs. (12) and (13) we get

BkUk = σUk, Z T
k BkUk = σ Z T

k Uk = 0, gU = U T
k gk = 0. (17)

Hence, it follows from Eqs. (16) and (17) that

A subspace implementation of trust region methods 245

φk(s) =
(

gT
Z s̄ + 1

2
s̄T Z T

k Bk Zk s̄

)
+ 1

2
σuT u. (18)

By the orthonormality of Zk and Uk , we have ‖s‖2 = ‖s̄‖2 +‖u‖2. Now the above
relation indicates that Eqs. (2) and (3) are equivalent to

min
s̄∈�r ,u∈�n−r

(
gT

Z s̄ + 1

2
s̄T Z T

k Bk Zk s̄

)
+ 1

2
σuT u (19)

s. t. ‖s̄‖2 + ‖u‖2 ≤ �2
k, (20)

with the relation s = Zks̄ + Uku. Because σ > 0, it is easy to see that the above
problem is equivalent to Eqs. (14) and (15) with u = 0. Thus, Eqs. (2) and (3) is
equivalent to Eqs. (14) and (15) with s = Zks̄. By Z T

k Zk = Ir (where Ir is the
r × r unit matrix), we get s̄ = Z T

k s.
�
From the above Lemma, if Eqs. (12) and (13) are satisfied, we can in fact solve

the subproblem 14 and 15 in �r instead of solving the subproblem 2 and 3 in �n ,
which can reduce the computation efforts significantly when k � n.

For line search methods, Siegel [22] proved a subspace property result for
Broyden family when Bk is invertible. The following lemma generalized Siegel’s
result from linear search methods to trust region methods.

Lemma 2.3 Suppose B1 = σ I, σ > 0. The matrix updating formula is any one
chosen from PSB and Broyden family, (where the updates may be singular), and
Bk is the kth updated matrix. Let sk be a solution of Eqs. (2) and (3), gk = ∇ f (xk),
Gk = Span{g1, g2, . . . , gk} and xk+1 = xk + sk (x1 ∈ �n is any given initial
point). Then for all k ≥ 1, sk ∈ Gk . Moreover for any z ∈ Gk and any u ∈ G⊥

k , we
have

Bk z ∈ Gk, Bku = σu. (21)

Proof The PSB formula and Broyden family formulae (see, e.g., Dennis and Schn-
abel [8], Fletcher [10], and Yuan [29]) can be represented as

Bk+1 = Bk + rksT
k + skr T

k

sT
k sk

−
(
r T

k sk
)

sksT
k(

sT
k sk

)2 , (22)

Bk+1 = Bk − BksksT
k Bk

sT
k Bksk

+ yk yT
k

sT
k yk

+ θk

(
sT

k Bksk

)
wkw

T
k , (23)

where sk = xk+1 − xk, yk = gk+1 − gk, rk = yk − Bksk, wk = (yk/sT
k yk) −

(Bksk/sT
k Bksk). We only prove the results for PSB formula 22 by induction over

k. The proof for other update formulae is similar.
By Lemma 2.1 and σ > 0, it is obvious that the lemma is true for k = 1. Now

we assume that the lemma is true for k = i . In the same way as Siegel [22], Eq. (21)
can be proved for k = i + 1. Let si+1 be a solution of Eqs. (2) and (3). Then by
gi+1 ∈ Gi+1 and Lemma 2.2 (where k = i + 1), we have si+1 = Zi+1zi+1 ∈ Gi+1
(where zi+1 is a solution of Eqs. (14) and (15) for k = i + 1). Thus, the proof is
completed.
�

By Lemma 2.2 and Lemma 2.3, we obtain the following theorem.

246 Z.-H. Wang, Y.-X. Yuan

Theorem 2.1 Let Zk be an orthonormal basis matrix of the subspaceGk=Span{g1,
g2, . . . , gk}. Suppose B1 = σ I, σ > 0, and Bk is the k th updated matrix given by
one formula chosen from PSB and Broyden family. Let sk be a solution of Eqs. (2)
and (3). Then we have sk ∈ Gk and there exists a solution zk of Eqs. (14) and (15)
such that sk = Zk zk .

From the above theorem, the trial step sk is in the subspace Gk . Hence, we can
in fact update the approximate Hessian matrix Bk in the subspace Gk by the PSB
formula or any one from the Broyden family. The following result has been given
by Siegel [22] and Gill and Leonard [12] for Broyden family. We give it here for
completeness.

Lemma 2.4 Let Z ∈ �n×r be a column orthogonal matrix such that Z T Z =
Ir . Suppose that sk ∈ Span{Z}, and the matrix Bk+1 = U pdate(Bk, sk, yk)
is obtained by the PSB formula or any one from the Broyden family. Denote
B̄k+1 = Z T Bk+1 Z , B̃k = Z T Bk Z , s̃k = Z T sk, ỹk = Z T yk, then B̄k+1 =
U pdate(B̃k, s̃k, ỹk).

Proof By the assumption sk ∈ Span{Z} and Z T Z = Ir , we have sk = Z Z T sk ,
and

sT
k yk = (Z T sk)

T Z T yk = s̃T
k ỹk

sT
k Bksk = (Z T sk)

T Z T Bk Z(Z T sk) = s̃T
k B̃k s̃k

Z T Bksk = Z T Bk Z(Z T sk) = B̃k s̃k

(24)

Therefore, multiplying Z T from left and Z from right to Eqs. (22) and (23), we
can see the lemma is true.
�

Theorem 2.1 tells us that we can solve the quadratic subproblem 2 and 3 by
solving Eqs. (14) and (15) in the subspace with the reduced gradient and the reduced
approximate Hessian, provided the initial Hessian approximation is appropriately
chosen. It follows from Lemma 2.3 and Lemma 2.4 that in fact the reduced approx-
imate Hessian B̄k = Z T

k Bk Zk of Bk in the subspace Gk = Span{g1, g2, . . . , gk}
can be obtained by updating the reduced matrix B̃k−1 = Z T

k Bk−1 Zk , where Zk is
the orthonormal basis matrix of the subspace Gk . By the relation between Zk and
Zk−1, we can get B̃k−1 by B̄k−1 = Z T

k−1 Bk−1 Zk−1 easily, which will be described
in detail in the next section. These subspace properties can reduce the amount of
computation significantly when n is very large and the dimension of the subspace
Gk remains far less than n.

3 The algorithm

Due to the subspace properties studied in the previous section, we can construct
subspace trust region algorithms based on the traditional trust region philosophy.
Let ‖ · ‖ denote Euclidean norm. Suppose at the k th iteration, Zk have been

A subspace implementation of trust region methods 247

obtained, which is the orthonormal basis matrix of Gk = Span{g1, . . . , gk}, and
the dimension of Gk is rk . Further, suppose s̄k is obtained by solving Eqs. (14)
and (15) and sk = Zks̄k , xk+1 = xk + sk , gk+1 = ∇ f (xk+1). Then we have to
compute Zk+1, ḡk+1 = Z T

k+1gk+1, and B̄k+1 = Z T
k+1 Bk+1 Zk+1 for next itera-

tion. For numerical stability, as proposed by Gill and Leonard [12], we could use
reorthogonalization procedure (see Daniel et al. [6], Golub and Van Loan [13], or
Stewart [26] for details) to obtain Zk+1 by the decomposition

gk+1 = Zkuk + ρk+1zk+1, (25)

where uk = Z T
k gk+1, zk+1⊥Span{Zk}, ‖zk+1‖ = 1, ρk+1 = ‖(I − Zk Z T

k)gk+1‖
≥ 0. From Eq. (25) and the fact that sk, gk ∈ Span{Zk} we obtain

zT
k+1gk+1 = ρk+1, zT

k+1sk = 0, zT
k+1gk = 0. (26)

Similar to Siegel [22] and Gill and Leonard [12], gk+1 is accepted if ρk+1 > 0 and
we set Zk+1 = [Zk, zk+1], rk+1 = rk + 1. Otherwise, gk+1 ∈ Span{Zk} and we
set Zk+1 = Zk, rk+1 = rk . In this case, gk+1 is rejected. If Zk+1 = [Zk, zk+1], it
follows from Lemma 2.3 that

Bk zk+1 = σ zk+1. (27)

Then by Eqs. (25) – (27) we get

ḡk+1 = Z T
k+1gk+1 =

[
Z T

k gk+1

zT
k+1gk+1

]
=

[
uk

ρk+1

]
,

s̃k = Z T
k+1sk =

[
s̄k
0

]
,

ỹk = Z T
k+1 yk =

[
Z T

k (gk+1 − gk)

zT
k+1(gk+1 − gk)

]
=

[
uk − ḡk
ρk+1

]
,

B̃k = Z T
k+1 Bk Zk+1 =

[
Z T

k Bk Zk σ Z T
k zk+1

σ zT
k+1 Zk σ zT

k+1zk+1

]
=

[
B̄k 0
0 σ

]
.

(28)

If Zk+1 = Zk , by Eqs. (25) and (26) we get

ḡk+1 = Z T
k+1gk+1 = Z T

k gk+1 = uk,

s̃k = Z T
k+1sk = Z T

k sk = s̄k,

ỹk = Z T
k+1 yk = Z T

k yk = uk − ḡk,

B̃k = Z T
k+1 Bk Zk+1 = Z T

k Bk Zk = B̄k .

(29)

According to Lemma 2.4, the reduced approximate Hessian B̄k+1 = Z T
k+1 Bk+1 Zk+1

in the subspace Span{Zk+1} can be obtained by any formula among the PSB and
Broyden family (where the SR1 update is included), using B̃k, s̃k, ỹk computed
in Eq. (28) or (29). For example, if we choose the BFGS formula and the SR1
formula, and we have computed B̃k, s̃k, ỹk in Eq. (28) or (29), by Lemma 2.4 we
obtain

B̄k+1 = B̃k − B̃k s̃k s̃T
k B̃k

s̃T
k B̃k s̃k

+ ỹk ỹT
k

s̃T
k ỹk

(for BFGS), (30)

248 Z.-H. Wang, Y.-X. Yuan

B̄k+1 = B̃k + (ỹk − B̃k s̃k)
T (ỹk − B̃k s̃k)

(ỹk − B̃k s̃k)T s̃k
(for SR1). (31)

Then by Theorem 2.1 we can solve Eqs. (14) and (15) with the reduced matrix B̄k+1
and the reduced gradient ḡk+1 to obtain the trial step s̄k+1 and sk+1 = Zk+1s̄k+1.

We summarize the above observations in the following algorithm.

Algorithm 2 The Subspace Quasi-Newton Trust Region Algorithm for
Unconstrained Optimization

Step 1. Given x1 ∈ �n, �1 > 0, 0 ≤ �min ≤ 10−6, ε ≥ εM ≥ 0, 1 > ν ≥ 0,
σ > 0, 0 ≤ τ0 < τ1 < 0.5 < τ2 < 1, 0 < c1 < 0.1 < c2 ≤ 0.5, c2 ≤
c3 < 1 < c4. Choosing one matrix updating formula amongst PSB and Broy-
den family. Compute f (x1) and g1 = ∇ f (x1). Set B̄1 = σ , ḡ1 = ‖g1‖,
Z1 = [g1/‖g1‖]. Set r := 1, k := 1.

Step 2. Solve the subproblem 14 and 15 approximately to get s̄k and φ̄(s̄k).
If |φ̄(s̄k)| ≤ εM then stop. Otherwise compute sk = Zks̄k and ηk =
f (xk) − f (xk + sk)/(−φ̄(s̄k)).

Step 3. If ηk ≤ τ0 and �k > �min, set �k := t1�k , where c1 ≤ t1 ≤ c2 , and
t1 is obtained by using the interpolation technique proposed by Dennis and
Schnabel [8]. Go to Step 2;
If ηk ≤ τ0 and �k ≤ �min, the algorithm fails and stop; Otherwise, do next
step.

Step 4. Set xk+1 = xk + sk and

�k+1 =



c3�k, if ηk < τ1,
c4�k, if ηk > τ2 and ‖sk‖ ≥ 0.8�k,
�k, otherwise.

(32)

Step 5. Compute gk+1 = ∇ f (xk+1). If ‖gk+1‖ ≤ ε, stop; Otherwise do next step.
Step 6. Obtain Eq. (25) by the reorthogonalization procedure.
Step 7. If ρk+1 > ν‖gk+1‖, set Zk+1 = [Zk, zk+1], r := r +1. Compute B̃k, s̃k, ỹk

according to Eq. (28);
Otherwise set Zk+1 = Zk and compute B̃k, s̃k, ỹk according to Eq. (29).

Step 8. Obtain B̄k+1 = Update(B̃k, s̃k, ỹk) by the chosen matrix updating formula
in the subspace Span{Zk+1}. Set k := k + 1 and go to Step 2.

If we set ν = 0 and suppose that there is no floating point error, by Theorem 2.1
and Lemma 2.4 the above algorithm is equivalent to the corresponding traditional
trust region algorithm which is superlinearly convergent. In practice, we could set
ν = 10−3 as proposed by Siegel [22]. Let rk denote Dim(Gk), n denote the number
of variables. The reorthogonalization procedure requires approximately 4nrk flops.
Since uk, ρk in Eqs. (28) and (29) are obtained by reorthogonalization, the update
B̄k+1 of B̄k in Eqs. (30) or (31) requires about 2r2

k + O(rk) flops. The computation
of a nearly optimal solution of the subproblem Eqs. (14) and (15) (see Moré and
Sorensen [16]) requires about 1/6(r3

k) + 3/2(r2
k) + O(rk) flops. The computation

sk = Zks̄k in Step 2 requires nrk flops, with the result that Algorithm 2 requires
approximately 5nrk + 1/6(r3

k) + 7/2(r2
k) + O(rk) flops for each iteration when

BFGS or SR1 is used. When rk = n, only Z T
k gk+1 is computed during the orthog-

onalization, and the work drops to 1/6(n3)+11/2(n2)+ O(n). The corresponding

A subspace implementation of trust region methods 249

conventional trust region method requires approximately 1/6(n3)+7/2(n2)+O(n)
for each iteration. So Algorithm 2 can reduce the amount of computation signifi-
cantly in early iterations, especially when n is very large and rk � n. In practice,
however, the order of the reduced Hessian rk often remains much less than n when
problems with large n are solved, as pointed out in Gill and Leonard [12] and our
numerical experiments in Sect. 4.

When ν > 0, the algorithm would be different from the traditional trust region
algorithm, but we still have the following convergence result, where dogleg [18,
19], double dogleg [7] and truncated CG methods [25,31] can be used to solve the
subproblem 14 and 15.

Theorem 3.1 Let s̄k be an approximate solution of Eqs. (14) and (15) which
satisfies (see Powell [20])

−φ̄(s̄k) ≥ 1

2
‖ḡk‖ min

(
�k,

‖ḡk‖
‖B̄k‖

)
. (33)

Suppose that {xk} is generated by Algorithm 2, f : �n → R is bounded below and
∇ f (x) is uniformly continuous. If B̄k satisfies

∞∑
k=1

1/Mk = ∞, (34)

where Mk is the number
Mk = max

1≤i≤k
‖B̄i‖ + 1, (35)

then the gradient norms {‖gk‖ : k = 1, 2, 3, . . .} cannot be bounded away from
zero, that is

lim
k→∞ inf‖gk‖ = 0. (36)

Proof By Eq. (25), we have

‖gk‖2 = ‖uk−1‖2 + ρ2
k , (37)

where uk−1 = Z T
k−1gk . If ρk > ν‖gk‖, gk is accepted and gk ∈ Span{Zk}, so we

have gk = Zk Z T
k gk = Zk ḡk and ‖gk‖ = ‖ḡk‖; Otherwise gk is rejected and we

have ρk ≤ ν‖gk‖, by Eqs. (29) and (37) and 0 ≤ ν < 1, we get

‖ḡk‖ = ‖uk−1‖ =
√

‖gk‖2 − ρ2
k ≥

√
1 − ν2‖gk‖, (38)

Eq. (38) is also true when ‖gk‖ = ‖ḡk‖, therefore Eq. (38) always holds. It follows
from Eqs. (33) and (38) that

−φ̄(s̄k) ≥ τ‖gk‖ min

(
�k,

‖gk‖
‖B̄k‖

)
. (39)

where τ = 1/2(1−ν2) > 0 is a positive constant. Then in the same way as Powell
[21] and Nocedal and Yuan [17], we can prove Eq. (36) by contradiction.
�

250 Z.-H. Wang, Y.-X. Yuan

The lingering technique has been proposed by Siegel [23] and Gill and Leonard
[12] for line search methods. If we choose 0 < ν < 1 in the above algorithm, and
ρk+1 ≤ ν‖gk+1‖ such that gk+1 is rejected, we are in fact lingering on the subspace
Span{Zk} minimizing F(z) = f (xk + Zk z) by a traditional trust region method
on that space. Hence, lingering steps in the subspace will not loop infinitely unless
the minimizer lies in the manifold xk + Span{Zk}.

In the above algorithm, we could also use the reinitialization technique pro-
posed by Liu and Nocedal [15] and Gill and Leonard [12]. For reinitialization, as
proposed by Gill and Leonard [12], we only need to compute an appropriate value
σk and replace σ in Eq. (28) with σk when gk+1 is accepted in Step 7 of Algorithm
2. We have considered the following seven alternatives, i.e.,

σ r0
k = 1, σ r1

k = yT
0 y0

sT
0 y0

, σ r2
k = sT

k yk

‖sk‖2 ,

σ r3
k = min

1≤i≤k

{
sT
i yi

‖si ‖2

}
, σ r4

k = yT
k yk

sT
k yk

,

σ r5
k = sT

0 y0

sT
0 s0

, σ r6
k = min

1≤i≤k

{
yT

i yi

sT
i yi

}
.

(40)

By numerical experiments, we find out that in the trust region framework, only
considering the reinitialization alone, the performance of the algorithm is not sat-
isfactory and cannot be favorably compared with the algorithm without reinitializa-
tion. It is necessary to combine reinitialization with an appropriate implementation
of the lingering technique to obtain better numerical results. We propose the fol-
lowing procedure for trust region methods, which combines the ideas proposed
in Siegel [23] and Gill and Leonard [12] for line search methods. Suppose gk is
accepted in the last iteration (which means Zk = [Zk−1, zk]), and we have obtained
s̄k = (s̄(k)

1 , s̄(k)
2 , . . . , s̄(k)

r) by solving Eqs. (14) and (15), where r is the number
of columns of Zk , which is the orthonormal basis matrix of Span{g1, . . . , gk}. If
|s̄(k)

r | ≤ µ1‖s̄‖ and ρk/‖gk‖ ≤ µ2, where 1 > µ2 > 0.2 > µ1 > 0, then we think
that although gk is accepted in the last iteration, the direction zk does not contrib-
ute sufficiently to sk compared with Zk−1. So we can discard zk and linger on the
subspace Span{Zk−1}. Then we compute xk+1 = xk + sk and gk+1 = ∇ f (xk+1).
Suppose gk+1 is accepted in Step 5, then Zk+1 = [Zk−1, zk+1]. In this way, the
dimension of Span{Zk} will not increase too quickly and we can reduce the amount
of computation per iteration. If we set µ1 = 0 and zk is discarded, we are in fact
minimizing f in the subspace Span{Zk−1} as the iteration proceeds. Thus, unless
the minimizer lies in the manifold xk−1 + Span{Zk−1}, lingering steps will not
loop infinitely.

Algorithm 3 The Subspace Quasi-Newton Trust Region Algorithm with Linger-
ing and Reinitialization

Step 1. Given 1 > µ2 > 0.2 > µ1 > 0 and some positive integer m > 1. Other
parameters are the same as Step 1 of Algorithm 2.

Step 2–Step 5. The same as Step 2–Step 5 of Algorithm 2.
Step 6. If |s̄(k)

r | ≤ µ1‖s̄k‖, gk is accepted in last iteration and ρk < µ2‖gk‖,
discard zk and set Zk = Zk−1. Otherwise, Zk is not changed.

Step 7. The same as Step 6 of Algorithm 2.

A subspace implementation of trust region methods 251

Step 8. If gk+1 is accepted (i.e., ρk+1 > ν‖gk+1‖), compute σk according to one
formula in Eq. (40) and replace σ in Eq. (28) with σk . Others are the same as
Step 7 of Algorithm 2.

Step 9. The same as Step 8 of Algorithm 2.

Algorithm 3 now is quite different from the traditional trust region algorithms.
However, we can prove the global convergence of Algorithm 3 in the same way as
Theorem 3.1.

4 Numerical results

In this section, Algorithm 2 is referred to the one with reinitialization, where we only
replace σ in Eq. (28) with the reinitialization parameter σk when gk+1 is accepted
in Step 7 of Algorithm 2. We have implemented Algorithm 2 and Algorithm 3 with
different reinitialization parameters defined in Eq. (40), and compared them with
a traditional trust region algorithm whose framework is the same as Algorithm 2
except that Eqs. (2) and (3) are solved instead of Eqs. (14) and (15), where Bk
is updated in the whole space. The matrix updating formulae we used are BFGS
and SR1. When the BFGS formula is adopted to update the approximate Hessian
Bk at each iteration, Algorithm 2 and Algorithm 3 with the reinitialization param-
eter r0–r6 defined in Eq. (40) are referred to “Sub1BFGSr0”–“Sub1BFGSr6”
and “Sub2BFGSr0”–“Sub2BFGSr6”, respectively, and the corresponding tradi-
tional trust region algorithm is referred to “TrBFGS”. The matrix update is skipped
for the above implementations if sT

k yk ≤ 10−12‖sk‖‖yk‖. Hence there are 15
implementations when BFGS is used, which are “Sub1BFGSr0”–“Sub1BFGSr6”,
“Sub2BFGSr0”–“Sub2BFGSr6” and “TrBFGS”. When the SR1 formula is adopted
to update the approximate Hessian Bk at each iteration, Algorithm 2 and Algo-
rithm 3 with the reinitialization parameter r0–r6 defined in Eq. (40) are referred to
“Sub1SR1r0”–“Sub1SR1r6” and “Sub2SR1r0”–“Sub2SR1r6”, respectively, and
the corresponding traditional trust region algorithm is referred to “TrSR1”. The
matrix update is skipped for these algorithms if ‖rkr T

k /r T
k sk‖ ≤ 10−12 according

to [4], where rk = yk − Bksk . Therefore, there are also 15 implementations when
SR1 is used, which are “Sub1SR1r0”–“Sub1SR1r6”, “Sub2SR1r0”–“Sub2SR1r6”,
and “TrSR1”.

In all the 30 implementations mentioned above, we calculate the trial step
using the subroutine GQTPAR which is designed based on the ideas described in
Moré and Sorensen [16] with the parameters rtol = 0.1, atol = 10−16. For all
the 30 implementations, the parameters in Step 1 is chosen as �1 = 1, �min =
10−15, εM = 10−20, ε = 10−5, ν = 10−8, τ0 = 0, τ1 = 0.25, τ2 = 0.75, c1 =
10−5, c2 = 0.22, c3 = 0.5 and c4 = 2, and we set m = 10, µ1 = 0.1, µ2 = 0.8
for Algorithm 3. Therefore, all the implementations are terminated if ‖gk‖ < 10−5,
or if the trust region radius is too small, i.e., �k < 10−15 at Step 3, or if the mini-
mum of the quadratic subproblem is too close to zero, i.e., |φ̄(s̄k)| ≤ εM = 10−20

at Step 2. The algorithms were coded in C language using double precision, and
the tests were performed on SGI O3800 with one CPU and the memory is limited
to 800 MB.

We use the performance profile proposed by Dolan and Moré [9] to display the
performance of each implementation on the set of test problems, which has some

252 Z.-H. Wang, Y.-X. Yuan

advantages over other existing benchmarking tools, especially for large test sets
where tables tend to be overwhelming. Let tp,s denote the time to solve problem
p by solver s. Define the performance ratio as

rp,s = tp,s

t∗p
,

where t∗p is the lowest time required by any solver to solve problem p. Therefore,
rp,s ≥ 1 for all p, s. If a solver does not solve a problem, the ratio rp,s is assigned
a large number M , which satisfies rp,s < M for all p, s where solver s succeeds
in solving problem p. Then the performance profile for each code s is defined as
the cumulative distribution function for the performance ratio rp,s , which is

ρs(τ) = no. of problems s.t. rp,s ≤ τ

total no. of problems
.

If τ < 1 we have ρs(τ) = 0. If τ = 1, then ρs(1) represents the percentage of
problems for which the solver s’s runtime is the best. We must note that when the
sets of solvers being compared are different, t∗p would be different, which would
lead to different performance profiles for the same solver which is in different sets
of solvers being compared, although the set of test problems is the same one. So we
can not compare performance profiles of solvers which are in different sets of solv-
ers. For more details about the performance profile please see Dolan and Moré [9].
The performance profile will also be used to analyze the number of objective func-
tion evaluations and gradient evaluations required by the above implementations.
For each implementation on each test problem, if the computed ‖gk‖2 < 10−5

or | fk − f ∗| < 10−8, where f ∗ is a local optimal objective function value, then
the implementation is regarded successful in solving the problem. Otherwise, the
implementation is regarded failed.

The test problems are chosen from CUTEr (see [1,14]) by the selection tool.
There are 158 unconstrained test problems in the current CUTEr (April 7, 2004).
Problems fletchbv and indef seem unbounded below even for n = 100, where n is
the number of variables. There are more than one local optimal point for problems
vibrbeam (n = 8) and broydn7d (n = 500), and different implementations get
different local optimal points. None of the implementations can solve the problem
jimack (n = 1000) in 1 h. These five problems are excluded, and left 153 problems
suitable for testing.

4.1 Numerical results on problems with medium size

We first test problems whose dimension are not bigger than 1,000. There are 69
problems with n < 50 (the number of variables is in the parenthesis):
akiva(2), allinitu(4), bard(3), beale(2), biggs6(6), box3(3), brkmcc(2), brownbs(2), brownden(4),
cliff(2), cube(2), denschna(2), denschnb(2), denschnc(2), denschnd(3), denschne(3), denschnf(2),
djtl(2), edensch(36), engval2(3), expfit(2), growthls(3), gulf(3), hairy(2), hatfldd(3), hatflde(3),
heart6ls(6), heart8ls(8), helix(3), hielow(3), hilberta(2), himmelbb(2), himmelbf(4), himmelbg(2),
himmelbh(2), humps(2), jensmp(2), kowosb(4), loghairy(2), maratosb(2), mexhat(2), meyer3(3),
osbornea(5), palmer1c(8), palmer1d(7), palmer2c(8), palmer3c(8), palmer4c(8), palmer5c(6),

A subspace implementation of trust region methods 253

palmer6c(8), palmer7c(8), palmer8c(8), pfit1ls(3), pfit2ls(3), pfit3ls(3), pfit4ls(3), rosenbr(2),
s308(2), sineval(2), sisser(2), snail(2), yfitu(3), zangwil2(2), 3pk(30), hilbertb(10), osborneb(11),
parkch(15), stratec(10) , watson(12),

and 55 problems with 50 ≤ n < 500:
chnrosnb(50), deconvu(61), errinros(50), hydc20ls(99), tointgor(50), tointpsp(50), tointqor(50),
vareigvl(50), arglina(200), arglinb(200), arglinc(200), brownal(200), chainwoo(100), cosine
(100), curly10(100), curly20(100),curly30(100), dixmaana(300),dixmaanb(300),dixmaanc(300),
dixmaand(300), dixmaane(300), dixmaanf(300), dixmaang(300), dixmaanh(300), dixmaani(300),
dixmaanj(300), dixmaank(300), dixmaanl(300), dixon3dq(100), eigenals(110), eigenbls(110),
eigencls(462), engval1(100), extrosnb(100), fletcbv2(100), fletcbv3(100), fletchcr(100), fmin-
srf2(121), fminsurf(121), mancino(100), modbeale(200), ncb20(110), noncvxu2(100), noncvxun
(100), penalty3(200), scosine(100), scurly10(100), scurly20(100), scurly30(100), sensors(100),
sparsine(100), sparsqur(100), vardim(200), woods(100),

and 29 problems with 500 ≤ n ≤ 1000:
arwhead(500), bdqrtic(500), brybnd(500), cragglvy(500), dqdrtic(500), dqrtic(500),freuroth(500),
genhumps(500), genrose(500), liarwhd(500), morebv(500), ncb20b(500), nondia(500), nondquar
(500), nonmsqrt(529), penalty1(500), penalty2(500), powellsg(500), power(500), quartc(500),
sbrybnd(500), schmvett(500), sinquad(500), srosenbr(500), tointgss(500), tquartic(500), tridia
(500), eg2(1000), testquad(1000).

In Table 1, we listed problems on which none of the above 30 implementations
can obtain a solution satisfying ‖gk‖2 < 10−5, and all the implementations are
regarded failed on these problems. Nevertheless, they are included because it is
useful to see that some problems are not solved by all the methods and the perfor-
mance profile can take care of this without obscuring the other results according
to [9].

First, Figs. 1 and 2 show the BFGS results for Algorithm 2 and Algorithm 3
with seven alternatives of σk (which are defined in Eq. (40)), where CPU time is
used as the performance metric, and τ (which is the variable of the performance
profile ρs(τ)) is in the interval [1, 10], which should be enough for our interest
to compare the performances of these different implementations. Figure 1 shows
that reinitialization does not seem to do much for Algorithm 2. There is more of a
spread for Algorithm 3 but Fig. 2 makes it clear that reinitialization combined with
lingering is helpful. According to Fig. 1a, the performances of Algorithm 2 without
reinitialization (i.e., σk = σ r0

k) outperform Algorithm 2 with the reinitialization
parameters σ r1

k –σ r6
k on about 65% problems, where our τ of interest is 1.5. Except

σ r0
k , the most preferred reinitialization parameter should be σ r6

k , and σ r2
k and σ r4

k
are the next two most preferred ones. In Fig. 1b, the implementations of Algorithm

Table 1 Hard problems (medium size) to solve

Name(Dim) Func.Val. ‖g‖∞
HYDC20LS(99) 0.04175233 62.13303
NONMSQRT(529) 61.32027 0.01179786
PENALTY2(500) 5.380714e+39 3.955348e+16
PENALTY3(100) 0.0009999536 0.005382481
SCOSINE(100) −99 3956.22
SCURLY10(100) −10031.63 0.003027471
SCURLY30(100) −10031.63 0.05164086

254 Z.-H. Wang, Y.-X. Yuan

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
ρ s(τ

)
ρ s(τ

)

Sub1BFGSr0
Sub1BFGSr1
Sub1BFGSr2
Sub1BFGSr3
Sub1BFGSr4
Sub1BFGSr5
Sub1BFGSr6

a

b

10
0 10

1

10
0 10

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sub2BFGSr0
Sub2BFGSr1
Sub2BFGSr2
Sub2BFGSr3
Sub2BFGSr4
Sub2BFGSr5
Sub2BFGSr6

τ

τ

Fig. 1 Performance profile for CPU time on [1, 10] for (a) Algorithm 2 (b) Algorithm 3

3 using seven alternatives of σk (i.e. the seven implementations “Sub2BFGSr0”–
“Sub2BFGSr0r6”) are compared. We can see that the reinitialization parameters
σ r6

k , σ r2
k , and σ r0

k are the first three most preferred ones, and the differences among
them are not strikingly obvious.

A subspace implementation of trust region methods 255

100 10
10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sub1BFGSr0
Sub1BFGSr4
Sub1BFGSr6
Sub2BFGSr0
Sub2BFGSr2
Sub2BFGSr6

ρ s(τ
)

τ

Fig. 2 Performance profile for CPU time on [1, 10]

Figure 1 indicates that “Sub1BFGSr0”, “Sub1BFGSr4”, and “Sub1BFGSr6”
are the first three most preferred implementations for Algorithm 2, and
“Sub2BFGSr6”, “Sub2BFGSr2”, and “Sub2BFGSr0” are the first three most pre-
ferred ones for Algorithm 3. Hence, the six implementations are compared in
Fig. 2. We can see that when the BFGS formula is used, Algorithm 3 with
reinitialization parameters σ r0

k (which means no reinitialization), σ r2
k , and σ r6

k out-
performs Algorithm 2 with reinitialization parameters σ r0

k , σ r4
k , and σ r6

k on about
80% problems. The two implementations “Sub2BFGSr2” and “Sub2BFGSr6” are
the preferred ones and the differences between them are not significant. Therefore,
it would be helpful to combine reinitialization with lingering when BFGS is used,
as pointed out in Gill and Leonard [12] for line search methods.

Figures 3 and 4 present the SR1 results, where the CPU time is used as the
performance metric. Figure 3a shows that reinitialization does not seem to do much
for Algorithm 2, and σ r0

k is the most preferred one, which is similar to the case
where the BFGS formula is used. The differences between σ r0

k and σ r5
k are not

obvious, and σ r1
k , σ r6

k are the next two most preferred ones. In Fig. 3b, the seven
implementations “Sub2SR1r0”–“Sub2SR1r0r6” are compared. We can see that the
reinitialization parameter σ r0

k is the most preferred one on about 50% problems,
and σ r1

k and σ r5
k are the next two most preferred ones. Then the six implemen-

tations “Sub1SR1r0”, “Sub1SR1r5”, “Sub1SR1r6”, “Sub2SR1r0”, “Sub2SR1r5”,
and “Sub2SR1r6” are selected to compare in Fig. 4. It shows that the framework
of Algorithm 3 does not work so well with SR1 on this set of test problems. Solver
“Sub1SR1r0” is the most preferred one on about 68% problems and implementa-
tion “Sub1SR1r5” is the most reliable one.

256 Z.-H. Wang, Y.-X. Yuan

100 10
1

100 10
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sub1SR1r0
Sub1SR1r1
Sub1SR1r2
Sub1SR1r3
Sub1SR1r4
Sub1SR1r5
Sub1SR1r6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sub2SR1r0
Sub2SR1r1
Sub2SR1r2
Sub2SR1r3
Sub2SR1r4
Sub2SR1r5
Sub2SR1r6

ρ s(τ
)

ρ s(τ
)

τ

τ

a

b

Fig. 3 Performance profile for CPU time on [1, 10] for a Algorithm 2 b Algorithm 3

Next, according to Figs. 2 and 3, the six implementations “Sub1BFGSr0”,
“Sub1BFGSr4”, “Sub2BFGSr6”, “Sub1SR1r0”, “TrBFGS”, and “TrSR1” are se-
lected to compare in Figs 5 and 6. When the number of objective function evalua-
tions and the number of gradient evaluations are used as the performance metrics,
Fig. 5 indicates that the implementation “Sub1SR1r0” is the most preferred one on

A subspace implementation of trust region methods 257

100
10

10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sub1SR1r0
Sub1SR1r5
Sub1SR1r6
Sub2SR1r0
Sub2SR1r5
Sub2SR1r6

ρ s(τ
)

τ

Fig. 4 Performance profile for CPU time on [1, 10]

about 60% problems, and “TrSR1” outperforms “TrBFGS” on about 50% prob-
lems. When CPU time is used as the performance metric, Fig. 6 indicates that the
implementation “Sub2BFGSr6” is the most preferred one. The implementation
“Sub1BFGSr0” outperforms “Sub1SR1r0” and “TrBFGS” outperforms “TrSR1”
now. It tells us that when the SR1 formula is used, the CPU time needed to solve
the quadratic subproblem will cost much more than that when the BFGS formula
is used. In order to improve the performance of implementations where SR1 is
used, perhaps we have to give a better estimation for the initial λ before calling the
subroutine GQTPAR (see [16] for more details) to solve the quadratic subproblem,
or other solvers for quadratic programming should be tried.

By comparing the two implementations “Sub1BFGSr0” and “Sub2BFGSr6” in
Figs. 5 and 6, we can see that although “Sub1BFGSr0” outperforms “Sub2BFGSr6”
in terms of function and gradient evaluations, “Sub2BFGSr6” wins over
“Sub1BFGSr0” in CPU time. This tells us that when BFGS is used, we gained
much in CPU time by using the reinitialization and lingering technique, which
makes the dimension of subspaces increase more slowly. From the two figures, we
can observe that Algorithm 2 which takes a subspace implementation outperforms
the two implementations “TrBFGS” and “TrSR1” which are implemented in the
full space, even when the number of objective function evaluations and the number
of gradient evaluations are used as the performance metrics.

4.2 Numerical results on problems with more variables

Now we will test these implementations on problems with more variables.
Because the performance of implementations with the reinitialization parameter

258 Z.-H. Wang, Y.-X. Yuan

100

0.2

0.4

0.6

0.8

1

Sub1BFGSr0
Sub1BFGSr4
Sub1SRr0
Sub2BFGSr6
TrBFGS
TrSR1

10
0 10

10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sub1BFGSr0
Sub1BFGSr4
Sub1SRr0
Sub2BFGSr6
TrBFGS
TrSR1

ρ s(τ
)

ρ s(τ
)

τ

τ

a

b

Fig. 5 Performance profile on [1, 10] for the number of a function evaluations and b gradient
evaluations

σ r5
k is almost the same as that with the reinitialization parameter σ r1

k , the imple-
mentations with the reinitialization parameter σ r5

k are not listed here in order to save
space. For each implementation, an upper limit on the CPU time needed to solve any
problem is set as half an hour (i.e. 1,800 s). If the CPU time needed to solve some
problem is more than half an hour, the implementation is stopped and is regarded

A subspace implementation of trust region methods 259

100
10

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sub1BFGSr0
Sub1BFGSr4
Sub1SRr0
Sub2BFGSr6
TrBFGS
TrSR1

ρ s(τ
)

τ

Fig. 6 Performance profile for CPU time on [1, 10]

failed. The following problems are excluded from comparing: (1) Problems that
none of the implementations can solve in half an hour. (2) Problems whose dimen-
sion are less than 100.1 (3)Problems on which all implementation’s CPU time are
less than 0.01 s. After excluding these problems, the following 73 problems are
selected. Denote n as the number of variables. There are 10 problems with 100 ≤
n ≤ 500: arglina(200), arglinb(200), arglinc(200), brownal(200), fletchcr(100), mancino(100),
penalty3(200), sensors(100), vardim(200), genrose(500); 44 problems with the 1000 ≤
n ≤ 3000: broydn7d(1000), chainwoo(1000), cosine(1000), curly10(1000), curly20(1000),
curly30(1000), dixmaana(3000), dixmaanb(3000), dixmaanc(3000), dixmaand(3000), dixmaane
(3000), dixmaanf(3000), dixmaang(3000), dixmaanh(3000), dixmaani(1500), dixmaanj(3000),
dixmaank(1500), dixmaanl(1500), dixon3dq(1000), edensch(2000), eigenals(2550), eigenbls
(2550), eigencls(2652) , extrosnb(1000), fletcbv2(1000), fletcbv3(1000), modbeale(2000), ncb20b
(1000), noncvxu2(1000), noncvxun(1000), nondquar(1000), nonmsqrt(1024), penalty1(1000),
penalty2(1000), power(1000), sbrybnd(1000), scosine(1000), scurly10(1000), scurly20(1000),
scurly30(1000), sparsqur(1000), testquad(1000), tridia(1000), woods(4000), and 19 prob-
lems with n ≥ 5000: arwhead(5000), brybnd(5000), bdqrtic(5000), cragglvy(5000), dqdr-
tic(5000), engval1(5000), fminsrf2(5625), freuroth(5000), liarwhd(5000), morebv(5000), ncb20
(5010), nondia(5000), powellsg(5000), schmvett(5000), sinquad(5000), sparsine (5000), srose-
nbr(5000), tointgss(5000), tquartic(5000).

On any problem listed above, every implementation terminated if ‖gk‖2 <
10−5 or ‖gk‖∞ < 10−6. In Table 2, we listed problems on which none of the
implementations can obtain a solution satisfying ‖gk‖2 < 10−5 or ‖gk‖∞ < 10−6.

1 Because the number of variables of about a half of the test problems in last subsection is less
than 100, we choose 100 as the divide line.

260 Z.-H. Wang, Y.-X. Yuan

100 10
10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sub1BFGSr0
Sub1BFGSr1
Sub1BFGSr2
Sub1BFGSr3
Sub1BFGSr4
Sub1BFGSr6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sub2BFGSr0
Sub2BFGSr1
Sub2BFGSr2
Sub2BFGSr3
Sub2BFGSr4
Sub2BFGSr6

ρ s(τ
)

ρ s
(τ

)

τ

100 10
1

τ

a

b

Fig. 7 Performance profile for CPU time on [1, 10] for a Algorithm 2 b Algorithm 3

Figures 7, 8, and 9 present the BFGS results on this set of test problems.
From Fig. 7, the most preferred reinitialization parameter seems to be σ r4

k for both
Algorithm 2 and Algorithm 3 on most test problems, which is the same as the
result obtained by Liu and Nocedal [15] and Gill and Leonard [12]. From Fig. 7b,
the implementation “Sub2BFGSr1” seems to be the most robust one. We should

A subspace implementation of trust region methods 261

Table 2 Hard problems (large scale) to solve

Name(Dim) Func.Val. ‖g‖∞
EIGENBLS(2550) 0.527474 0.2121526
EIGENCLS(2652) 399.6872 30.99925
FLETCBV3(1000) −2.581354e+11 2.50299
FREUROTH(5000) 608,006.2 0.004854594
NONMSQRT(1024) 92.33829 0.01946075
PENALTY2(1000) 1.446399e+83 2.050731e+38
PENALTY3(200) 0.0009989562 0.08085646
SBRYBND(1000) 3,160.284 229,170.1
SCOSINE(1000) −979.0675 4004.883
SCURLY10(1000) −71435.48 1,013400
SCURLY20(1000) −77530.27 95948.84
SCURLY30(1000) −82,023.76 3,204,406
SPARSINE(5000) 0.04806616 0.174282

note that we can not compare “Sub1BFGSr4” with “Sub2BFGSr4” according
to Fig. 7a , 7b, because the sets of solvers compared are different, which leads
to different t∗p and different performance profile for the same solver. According to
Fig. 7, the six implementations “Sub1BFGSr0”, “Sub1BFGSr1”, “Sub1BFGSr4”,
“Sub2BFGSr0”, “Sub2BFGSr1”, “Sub2BFGSr4” are selected to compare in
Figs. 8 and 9, where the number of objective function evaluations, the number of
gradient evaluations, and the CPU time are used as the performance metrics, respec-
tively. In Fig. 8 the implementation “Sub1BFGSr4” outperforms “Sub2BFGSr4”
and is the most preferred one in terms of the number of objective function and
gradient evaluations. Figure 9 indicates that the implementation “Sub2BFGSr4” is
the most preferred one, which outperforms “Sub1BFGSr4” in terms of CPU time.
This tells us that we gained much in CPU time by using the lingering technique,
which makes the dimension of subspaces increase more slowly. We could also see
that the performance profile of “Sub1BFGSR4” of Fig. 9 looks a little different to
that of Fig. 7, because the sets of solvers compared are different.

Figures 10, 11 and 12 present the SR1 results. Figure 10 indicates that the reini-
tialization parameter σ r1

k is the most preferred one for both Algorithm 2 and Algo-
rithm 3. In Fig. 11 and 12, the five implementations “Sub1SR1r0”, “Sub1SR1r1”,
“Sub2SR1r1”, “Sub2SR1r3”, and “Sub2SR1r6” are compared. From Fig. 11 (where
the number of objective function evaluations and the number of gradient evalua-
tions are used as the performance metrics), the implementation “Sub1SR1r1” is
the most preferred one. Figure 12 indicates that implementation “Sub2SR1r1” is
the most preferred one in terms of CPU time, and it outperforms “Sub1SR1r1”
on about 50% of the problems because of the lingering technique, although the
difference between them is not strikingly obvious. This tells us that the technique
of combining reinitialization with lingering is beneficial with SR1 on this set of
test problems, which is contrary to what has been observed in Fig. 4.

Finally, according to Figs. 9 and 12, the seven implementations “Sub1BFGSr0”,
“Sub1BFGSr4”, “Sub2BFGSr4”, “TrBFGS”, “Sub1SR1r0”, “Sub1SR1r1” and
“TrSR1” are selected to compare in Figs. 13 and 14. From Fig. 13, the two
implementations “Sub1SR1r1” and “Sub1BFGSr4” are the two preferred ones,
where the number of objective function evaluations and gradient evaluations are
used as performance metrics, and the implementation “Sub1SR1r1” outperforms

262 Z.-H. Wang, Y.-X. Yuan

100 10
10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sub1BFGSr0
Sub1BFGSr1
Sub1BFGSr4
Sub2BFGSr0
Sub2BFGSr1
Sub2BFGSr4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sub1BFGSr0
Sub1BFGSr1
Sub1BFGSr4
Sub2BFGSr0
Sub2BFGSr1
Sub2BFGSr4

ρ s(τ
)

ρ s(τ
)

τ

100 10
1

τ

a

b

Fig. 8 Performance profile on [1, 10] for the number of a function evaluations and b gradient
evaluations

“Sub1BFGSr4” on about 60% problems. The implementation “Sub1SR1r0” out-
performs “Sub1BFGSr0”, and “TrSR1” outperforms “TrBFGS”, although the
differences between them are not significant. When CPU time is used as the
performance metric, Fig. 14 shows that the implementation “Sub2BFGSr4” be-
comes the most preferred one because of the lingering technique. “Sub1SR1r1”

A subspace implementation of trust region methods 263

100 10
10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sub1BFGSr0
Sub1BFGSr1
Sub1BFGSr4
Sub2BFGSr0
Sub2BFGSr1
Sub2BFGSr4

ρ s(τ
)

τ

Fig. 9 Performance profile for CPU time on [1, 10]

outperforms “Sub1BFGSr4” on about 50% problems, and “Sub1SR1r0” outper-
forms “Sub1BFGSr0” on this set of test problems. If one takes robustness as the
most important criteria, we can see from Figs. 13 and 14 that the implementation
“Sub1BFGSr4” should be the most preferred one. All the five subspace implemen-
tations outperform the two solvers “TrBFGS” and “TrSR1” which are implemented
in the whole space. By comparing Figs. 6 and 14, we can see that the subspace
solvers will win more over the solvers “TrBFGS” and “TrSR1” when the test
problems are large-scale. For example, “Sub1BFGSr0” solved the problem arw-
head with n = 5, 000 in six iterations, and the CPU time needed is only 0.69
s, but both “TrBFGS” and “TrSR1” failed to solve this problem in half an hour.
For most large scale problems tested, the dimension rk of the subspace spanned
by g1, g2,. . ., gk remains far less than the number of variables n when the prob-
lem is solved. For example, among the 30 problems with n > 1, 000 on which
the implementation “Sub1BFGSr4” succeeded, there are 25 problems solved with
rk ≤ 0.1n and 29 problems solved with rk ≤ 0.2n, where rk is the dimension of
the subspace.

From these numerical results, we can conclude that the subspace trust region
methods are more efficient in implementation than the conventional trust region
methods which are implemented in the whole space.

5 Conclusions

The subspace properties of trust region methods for unconstrained optimization
are studied, provided that the approximate Hessian is updated by quasi-New-
ton formulae, and the initial Hessian approximation is appropriately chosen. Due

264 Z.-H. Wang, Y.-X. Yuan

100 101
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sub1SR1r0
Sub1SR1r1
Sub1SR1r2
Sub1SR1r3
Sub1SR1r4
Sub1SR1r6

0

0.2

0.4

0.6

Sub2SR1r0
Sub2SR1r1
Sub2SR1r2
Sub2SR1r3
Sub2SR1r4
Sub2SR1r6

ρ s(τ
)

ρ s(τ
)

τ

100 101

τ

a

b

Fig. 10 Performance profile for CPU time on [1, 10] a Algorithm 2 b Algorithm 3

to the subspace properties, we can solve the quadratic subproblem with reduced
Hessian and reduced gradient to obtain the trial step, and we can update the approx-
imate reduced Hessian in the subspace. The equivalence of the subspace trust re-
gion methods with the traditional trust region methods is shown in Sect. 2. When
the dimension of the subspace is much smaller than the number of variables, the

A subspace implementation of trust region methods 265

100 10
10.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sub1SR1r0
Sub1SR1r1
Sub2SR1r1
Sub2SR1r3
Sub2SR1r6

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sub1SR1r0
Sub1SR1r1
Sub2SR1r1
Sub2SR1r3
Sub2SR1r6

ρ s(τ
)

ρ s(τ
)

τ

100 10
1

τ

(a)

(b)

Fig. 11 Performance profile on [1, 10] for the number of a function evaluations and b gradient
evaluations

amount of computation can be reduced significantly. Numerical results in Sect. 4
indicate that the subspace trust region methods not only gained in CPU time, but
also require less function and gradient evaluations than the traditional trust region
methods which are implemented in the whole space. When trust region methods

266 Z.-H. Wang, Y.-X. Yuan

100 1010

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sub1SR1r0
Sub1SR1r1
Sub2SR1r1
Sub2SR1r3
Sub2SR1r6

ρ s
(τ

)

τ

Fig. 12 Performance profile for CPU time on [1, 10]

are implemented in subspaces, CPU time is significantly reduced for large-scale
problems.

We could also use the reinitialization technique conveniently in Algorithm 2.
But only with reinitialization at each iteration, the numerical results are not as good
as the case without reinitialization on the set of 153 test problems listed in Sect. 4.1,
although reinitialization should reduce the influence of a poor initial estimate of
the Hessian from intuition. But on the set of problems with more variables (i.e.
problems listed in Sect. 4.2), the reinitialization technique becomes preferred, and
the most preferred reinitialization parameter is σk = σ r4

k = yT
k yk/sT

k yk for BFGS
which has been proposed in Liu and Nocedal [15] and Gill and Leonard [12], or
σk = σ r1

k = yT
0 y0/sT

0 y0 for SR1.

By combining reinitialization with lingering technique, which has been pro-
posed in Gill and Leonard [12] for line search methods, Algorithm 3 obtains better
numerical results. When the BFGS formula is used, the the most preferred reini-
tialization parameter is σ r6

k = min1≤i≤k{yT
i yi/sT

i yi } on the set of 153 problems
whose size ranging from small to medium (i.e., problems listed in Sect. 4.1), or
σ r4

k = yT
k yk/sT

k yk on the set of test problems with more variables (i.e. problems
listed in Sect. 4.2). When the SR1 formula is used, the framework of Algorithm
3, which uses reinitialization in conjunction with lingering, does not work so well
on the set of 153 problems listed in Sect. 4.1. But on the set of test problems
with more variables (i.e. problems listed in Sect. 4.2), Algorithm 3 with SR1 and
the reinitialization parameter σ r1

k = yT
0 y0/sT

0 y0 becomes the most preferred one,
which means that the technique of combining reinitialization with lingering would
be beneficial for large-scale problems.

A subspace implementation of trust region methods 267

100 101

100 101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sub1BFGSr0
Sub1BFGSr4
Sub1SRr0
Sub1SRr1
Sub2BFGSr4
TrBFGS
TrSR1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Sub1BFGSr0
Sub1BFGSr4
Sub1SRr0
Sub1SRr1
Sub2BFGSr4
TrBFGS
TrSR1

ρ s(τ
)

ρ s(τ
)

τ

τ

a

b

Fig. 13 Performance profile on [1, 10] for the number of a function evaluations and b gradient
evaluations

From these numerical results, we can conclude that reinitialization and linger-
ing techniques are useful for large-scale problems, but the effect is not favorably
supported when the test problem’s size is small and medium.

268 Z.-H. Wang, Y.-X. Yuan

100 10
10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Sub1BFGSr0
Sub1BFGSr4
Sub1SRr0
Sub1SRr1
Sub2BFGSr4
TrBFGS
TrSR1

ρ s(
τ)

τ

Fig. 14 Performance profile for CPU time on [1, 10]

Acknowledgements This work was supported by Chinese NSF grant 10231060 and the Person-
nel Fund of Beijing Jiaotong University LIJ05001.We would like to thank Professor
A. R. Conn and another anonymous referee for their kind advice and modifications, which are
very important in improving the quality of the paper.

References

1. Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, Ph.L.: CUTE: constrained and unconstrained
testing environment. ACM Trans. Math. Softw. 21, 123–160 (1995)

2. Byrd, R., Schnabel, R.B., Shultz, G.A.: Approximation solution of the trust region problem
by minimization over two-dimensional subspaces. Math. Prog. 40, 247–263 (1988)

3. Conn, A.R., Gould, N.I.M., Sartenaer, A., Toint, Ph.L.: On the iterated-subspace mini-
mization methods for nonlinear optimization with a combination of general equality and
linear constraints. In: Adams, L., Nazareth, J.L. (eds.) Proceedings on Linear and Nonlinear
Conjugate Gradient-Related Methods, pp. 50–78. SIAM (1996)

4. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Testing a class of methods for solving minimization
problems with simple bounds on the variables. Math. Comput. 50, 399–430 (1988)

5. Conn, A.R., Gould, N.I.M., Toint, Ph.L.: Trust-Region Methods. SIAM Publications,
Philadelphia, Pennsylvania (2000)

6. Daniel, W., Gragg, W.B., Kaufman, L., Stewart, G.W.: Reorthogonalization and stable algo-
rithms for updating the Gram–Schmidt QR factorization. Math. Comput. 30, 772–795 (1976)

7. Dennis, J.E., Mei, H.H.W.: Two new unconstrained optimization algorithms which use func-
tion and gradient values. J. Optim. Appl. 28, 453–482 (1979)

8. Dennis, J.E., Schnabel, R.B.: Numerical Methods for Unconstrained Optimization and
Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ (1983)

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles.
Math. Prog. 91, 201–213 (2002)

10. Fletcher, R.: Practical Methods of Optimization, 2nd edn. Wiley, New York (1987)
11. Gay, D.M.: Computing optimal locally constrained steps. SIAM J. Sci. Stat. Comput. 2,

186–197 (1981)

A subspace implementation of trust region methods 269

12. Gill, P.E., Leonard, M.W.: Reduced-Hessian quasi-Newton methods for unconstrained opti-
mization. SIAM J. Optim. 12, 209–237 (2001)

13. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University
Press, Baltimore (1996)

14. Gould, N.I.M., Orban, D., Toint, Ph.L.: CUTEr and SifDec: a constrained and unconstrained
testing environment, revisited. ACM Trans. Math. Softw. 29, 373–394 (2003)

15. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization.
Math. Prog. 45, 503–528 (1989)

16. Moré, J.J., Sorensen, D.C.: Computing a trust region step. SIAM J. Sci. Stat. Comput. 4,
553–572 (1983)

17. Nocedal, J., Yuan, Y.: Combining trust region and line search techniques. In: Yuan, Y. (ed.)
Advances in Nonlinear Programming, Proceedings of the 1996 International Conference on
Nonlinear Programming, pp. 153–176, Kluwer, Dordrecht (1998)

18. Powell, M.J.D.: A new algorithm for unconstrained optimization. In: Rosen, J.B.,
Mangasarian, O.L., Ritter, K.(eds.) Nonlinear Programming, pp. 31–66. Academic, New
York (1970)

19. Powell, M.J.D.: A hybrid method for nonlinear equations. In: Robinowitz, P. (ed.) Numer-
ical Methods for Nonlinear Algebraic Equations, pp. 87–144. Gordon and Breach Science,
London (1970)

20. Powell, M.J.D.: Convergence properties of a class of minimization algorithms. In:
Mangasarian, O.L., Meyer, R.R., Robinson S.M. (eds.) Nonlinear Programming, 2, pp. 1–27.
Academic, New York (1975)

21. Powell, M.J.D.: On the global convergence of trust region algorithms for unconstrained
minimization. Math. Prog. 29, 297–303 (1984)

22. Siegel, D.: Implementing and modifying Broyden class updates for large scale optimization.
Report DAMPT 1992/NA12, University of Cambridge, Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, Cambridge, England (1992)

23. Siegel, D.: Modifying the BFGS update by a new column scaling technique. Math. Prog. 66,
45–78 (1994)

24. Sorensen, D.C.: Newton’s method with a model trust region modifications. SIAM J. Numer.
Anal. 19, 409–426 (1982)

25. Steihaug, T.: The conjugate gradient method and trust regions in large scale optimization.
SIAM J. Numer. Anal. 20, 626–637 (1983)

26. Stewart, G.W.: Matrix Algorithms. Volume 1: Basic Decompostions. SIAM, Philadelphia,
PA (1998)

27. Stoer, J., Yuan, Y.: A subspace study on conjugate gradient algorithms. ZAMM Z. Angew.
Math. Mech. 75, 69–77 (1995)

28. Vlc̃ek, J., Luks̃an, L.: New variable metric methods for unconstrained minimization cover-
ing the large-scale case. Technical Report No. V876, October 2002, Institute of Computer
Science, Academy of Sciences of the Czech Republic (2002)

29. Yuan, Y.: Numerical Methods for Nonlinear Optimization. Shanghai Science and Technology
Press, Shanghai (1994)

30. Yuan, Y.: A review of trust region algorithms for optimization. In: Ball, J.M., Hunt, J.C.R.
(eds.) ICM99: Proceedings of the Fourth International Congress on Industrial and Applied
Mathematics, pp. 271–282. Oxford University Press, Oxford (2000)

31. Yuan, Y.: On the truncated conjugate gradient method. Math. Prog. 87, 561–571 (2000)

