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� Introduction

Parameter identi�cation problems play an important role in many applications

in science and industry see �	� ���� By parameter identi�cation� we refers that

the estimation of coe�cients in a di�erential equation from observations of the

solution to that equation� We call the coe�cients the system parameters� and the

solution and its derivatives the state variables� The forward problem is to com�

pute the state variables given the system parameters and appropriate boundary

conditions� which is a well�posed problems� However in parameter identi�cation�

the problems is typically ill�posed see �����
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For example� we consider the problem of identifying a distributed parameter

q � qx� in the one�dimentional steady�state di�usion equation in the form

�rqru� � g� in 
� 	� 	�

with Dirichlet boundary conditions

u
� � u�� u	� � u��

This is used to model for example� the steady�state temperature distribution

within a thin metal rod see �	���� Another example is the inverse groundwater

�ltration problem of reconstructing the di�usitivity q of a seidment from mea�

surements of the piezometric head u in the steady state case see �	� for further

applications�� We take the former case as our example� In this setting� the state

variable is the temperature distribution ux�� x � 
� 	�� the system parameters

are di�usion coe�cient qx� and the heat source term gx�� The inverse problems

stated here is determining parameter qx� by giving gx� and ux� for x � �
� 	��

For sake of simplifying the notations� we outline the problem in the abstract

operator form

F q�u � g� ��

where F q� represents a parameter�dependent di�erential operator from the pa�

rameter space Q to the state space U � q � Q represents the distributed parameter

to be estimated� and u � U represents the correspoinding state variable� In case

of the above example� q represents the di�usion coe�cient� and

F q� � �rqr����

Since u is the observation data� therefore� it may contain noise� Assume that

the observed data can be expressed as

ue � u� e ��

with Gaussian noise e�

Because of the ill�posedness of the problem 	�� some kind of regularization

technique has to be applied see ��� 	�� ����� Perhaps Tikhonov regularization

method see ��� �
�� is the most well�known method for dealing with such kind of

problems�

Given the regularization parameter � � 
� choose q� � Q to solve the uncon�

strained minimization problem

min
q�Q

M��q� �� kF q�ue � gk� � �kqk�� ��
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where � � 
 is called the regularization parameter and kqk� serves as the stabi�

lizer�

Assume the forward problem solving for u is well�posed� then we can denote

the solution by

fq� �� u � F��q�g� ��

Clearly we want to minimize the following constrained functional

Jq�Qq� �
	

�
ku� uek

�� ��

s� t� F q�u � g� ��

By ��� problem ����� is equivalent to the unconstrained regularized least

squares minimization problem

minJq�Qq� �
	

�
kfq�� uek

�� ��

Certainly we can use the Tikhonov regularization to ��� for which� we have

the following minimization problem�

minJq�Qq� �
	

�
kfq�� uek

� � ��q�� ��

where �q� is a regularized fuctional whose duty is to impose stability� � � 
 is a

regularization parameter�

This paper will deal with the problem in a di�erent way� i�e�� we use some

kind of approximation to the original problem ��� then the trust region technique

is used�

� Finite Dimensional Approximation� Trust Re�

gion Method

First we introduce the trust region method in a general way� Trust region meth�

ods are a group of methods for ensuring global convergence while retaining fast

local convergence in optimization algorithms� For example� we consider the min�

imization problem

min
x�Rn

fx�� 	
�

In trust region methods� we �rst choose a trial step length �� and then use the

quadratic model to select the best step of at most� this length for the quadratic

model by solving

min�xc � �� � fxc� � gxc�� �� �
	

�
Hc�� ��� 		�
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s� t� k�k � �c� 	��

The trial step length �c is considered an estimate of how far we trust the quadratic

model� hence it is called a trust radius and the resultant method is called a trust

region method�

In this section� we will consider the approximation minimization problem ��

by utilizing the trust region technique mentioned above�

As a rule� the numerical solution of the fundamental problem would be im�

possible without the use of computers� In general� the traditional way of imple�

mentation is to perform a �nite�dimentional approximation of the problem under

considerations�

Let Pn denote a projection of Q onto an n�dimentional subspace Qn� i�e��

Pn � Q �� Qn and �Pn � Qn �� Q� which possess a number of remarkable

properties�

	� the operators Pn and �Pn are continuous for all n�

�� Pn
�Pn � In� where In is the identity operator on the space Xn�

�� �PnPnq � DF � for any q � DF � and all positive integers n�

Similarly� let Rm denote a projection of U onto an m�dimentional subspace

Um� i�e�� Rm � U �� Um and �Rm � Um �� U � Now we can de�ne Fmn the �nite

approximation to the nonlinear operator F �

Fmnq�u �� RmF Pnq�u� 	��

Now in �nite dimensional case� the minimization problem is in the form

minJq�Qnq� �
	

�
ku� uek

�� 	��

s� t� Fmnq�u � g� 	��

Furthermore� if we denote fmnq� � F��
mnq�g� 	���	�� can be transformed into

the following unconstrained minimization problem

minJq�Qnq� �
	

�
kfmnq�� uek

�� 	��

Since F is di�erentiable� each Fmn is di�erentiable� Let us denote Jq�Qnq� by

Jn or Jnq�� the gradient of the functional Jq�Qnq� by gradJn�� the approximate

Hessian of the functional Jq�Qnq� by HessJn�� At each iteration� a trial step is

calculated by solving the subproblem

min
s�Qn

	ks� �� gradJn�
T
k s�

	

�
HessJn�ks� s�� 	��
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s� t� Is� � �k� 	��

in �nite spaces Qn and Um� For simplicity� we assume that m � n� In the above

expression� Is� denotes some kind of modular� For example� we can take Is� as
�
�
ksk�

L� � Here� for our purpose� we take Is� as
�
�
kLsk�� where L denotes some kind

of di�erential operator� which is bounded� self�adjoint positive de�nite� In 	���

	��� gradJn�k is the gradient at the current approximate solution� HessJn�k
is an n � n symmetric matrix which approximates the Hessian of Jq�Qnq� and

�k � 
 is a trust region radius� Let sk be a solution of 	���	��� The predicted

reduction is de�ned by the reduction in the approximate model� i�e��

Predk � 	k
�� 	ksk� � �	ksk�� 	��

Unless the current point qk is a stationary point and HessJn�k is positive semi�

de�nite� the predicted reduction is always positive� The actual reduction is the

reduction in the objective function

Aredk � Jq�Qnqk�� Jq�Qnqk � sk�� 	��

And we de�ne the ratio between the actual and the predicted reduction by

rk �
Aredk
Predk

�
�

which is used to decide whether the trial step is acceptable and to adjust the new

trust region radius�

With the above analysis� we generate the trust region algorithm for solving

parameter identi�cation problem as follows�

Algorithm ��� �Trust region algorithm for parameter identi�cation problem�

STEP � Given the initial guess value q� � R
n� �� � 
� 
 
 �� 
 �� 
 	 
 ���


 � �� � �� 
 	� �� � 
� k �� 	�

STEP � If the stopping rule is satis�ed then STOP� Else� solve ����	��
�

giving sk�

STEP � Compute rk�

qk�� �

�
qk if rk � ���
qk � sk otherwise�

�	�

Choose �k�� that satis�es

�k�� �

�
���kskk� ���k� if rk 
 ���
��k� ���k� otherwise�

���
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STEP � Evaluate gradJn�k and HessJn�k� k�k��� GOTO STEP ��

The constant �i i � 
� � � � � �� can be chosen by users� Typical values are

�� � 
� �� � �� �� � �� � 
���� �� � 
��� For other choices of those constants�

please see ���� ���� �	��� �	��� etc�� The parameter �� is usually zero see ���� �	���

or a small positive constant see ��� and �	���� The advantage of using zero �� is

that a trial step is accepted whenever the objective function is reduced� Hence

it would not throw away a �good point�� which is a desirable property especially

when the function evaluations are very expensive see ��	���

In STEP �� the stopping rule is based on the so�called discrepancy principle�

which will be stated in the next section�

There are several ways to evaluate the gradient of the leat squares cost func�

tional� say� �nite di�erences method� adjoint or costate methods see �	�� ����

������ For �nite di�erences method� for example� assuming a discretization of the

parameter of the form

q �
nX
i��

ci�i�

can be obtained� then the gradients can be approximated by

gradJnq���i �
Jnq � hi�i�� Jnq�

hi
� i � 	� �� � � � � n� ���

where hi is a relatively small scalar compared to the ith component of the dis�

cretized parameter q� For distributed parameter identi�cation� �nite di�erence

gradient computations are expensive� From equations 	���	�� we know each

gradient evaluation reqiures n evaluations of fmnq� � F��
mnq�g� and each com�

putation of F��
mnq� entails the approximate solution of a di�erential equation�

When n is large� gradient approximations based directly on ��� are extremely

expensive� requiring n � 	 evaluations of the functional Jnq�� and hence n � 	

solutions of the equation ���

Adjoint or costate methods for parameter identi�cation were introduced by

Chavant and Lemonier see ����� These kinds of methods can remarkably reduce

the cost of gradient evaluation� Consider the least squares problem�

Jnq� �
	

�
kfmnq�� uek

�� ���

Letting resq� � fmnq��ue denote the residual and using the fact that d
dh
Fmnq�

hei�jh�� �
dFmn
dq

ei� we obtain a representation for the components of the gradient
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of Jnq�� For i � 	� �� � � � � n�

gradJnq���i ��
d

dh
Jnq � hei�jh��

� 
d

dh
fmnq � hei�jh��� resq��

� �F��q�
dFmn

dq
eiF

��
mnq�g� resq��

� 
dFmn

dq
eiu� v��

where u solves the state equation 	�� and v solves the adjoint or costate equation

F �
mnq�v � �resq��

In the above expression� F �
mn stands for the adjoint of the operator Fmn�

Compared with the �nite di�erence computation ���� the costate gradient

computation requires only one inversion of the operator Fmnq�� together with

one inversion of its adjoint�

Now we turn to Hessian computations� We use Gauss�Newtion method to

approximate the exact Hessian of Jq�Qnq�� For ease of notation� we simply

denote Hessian the exact Hessian of Jq�Qnq�� In context of the least squares

functional ���� its Hessian can be expressed as

Hessian � HessJnq�� �
d�fmn

dq�
resq�� ���

where

HessJnq�� � 
dfmn

dq
��

dfmn

dq
��

HessJnq�� is the so�called Gass�Newton approximation to the Hessian� This

evaluation has some computational advantages� First� it can sometimes be much

easier to compute than the full Hessian� since it does not involve the second

derivative term d�fmn
dq�

� which has a tensor representation� Moreover� from Propo�

sition ��� in the following context� we can conclude that the scaled trust region

step is a strict decent direction if the �rst derivative dfmn
dq

has full rank� Even if
dfmn
dq

does not have full rank� we can adjust the Lagrangian parameter �� such

that the trust region step is a decent direction�

Take Qn � Um � Rn� then for subproblem 	���	��� we have the following

lemma�
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Lemma ��� A vector s� � Rn is a solution of the problem

min
s�Rn

	s� �� gradJn�
T s�

	

�
HessJn�s� s�� ���

s� t� Is� � �� ���

where Is� � �
�
kLsk�� L is a bounded self	adjoint positive semi	de�nite linear

operator� gradJn� � R
n� HessJn� � R

n�n is a symmetric matrix� and � � 
�

if and only if there exists �� 	 
 such that

HessJn� � ��L�L�s� � �gradJn� ���

and that HessJn� � ��L�L is positive semi	de�nite� Is�� � � and

���� Is��� � 
� ���

Proof� Equations ������� are just the KKT conditions of the optimization

problem �������� It remains to show HessJn����L�L is positive semi�de�nite�

Assume that s� 
� 
� Since s� solves �������� it also solves minf	s� � Is� �

Is��g� It follows that 	s� 	 	s�� for all s such that Is� � Is��� This

inequality together with ��� gives

�sT HessJn� � ��L�L�s� �
	

�
HessJn�s� s� 	

�s�T HessJn� � ��L�L�s� �
	

�
HessJn�s

�� s��� �
�

Rearranging terms in �
� gives

	

�
s� � s�T HessJn� � ��L�L�s� � s� 	

	

�
�kLsk� � kLs�k�� � 
 �	�

for all s such that Is� � Is��� Since s 
� 
� it follows from �	� that HessJn��

��L�L is positive semi�de�nite� If s� � 
� it follows from ��� that gradJn� � 
�

Therefore s� � 
 solves minf�
�
HessJn�s� s� � Is� � �g and we must conclude

that HessJn� is positive semi�de�nite� Since �� 	 
 is necessary� and hence

HessJn� � ��L�L is positive semi�de�nite� Q�E�D

Lemma ��� establishes necessary conditions concerning the pair ��� s� when

s� solves �������� Our next result establishes su�cient conditions that will

ensure s is a solution to ��������
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Lemma ��� Let �� � R� s� � Rn satisfy

HessJn� � ��L�L�s� � �gradJn� ���

with HessJn� � ��L�L is positive semi	de�nite� Then we have the following

results

��� If �� � 
 and Is�� � � then s� solves ����	��
��

��� If Is�� � � then s� solves

	s�� � minf	s� � Is� � �g�

��� If �� 	 
 and Is�� � � then s� solves ����	��
�� Furthermore� if

HessJn� � ��L�L is positive de�nite then s� is unique in each of cases ����

��� and ����

Proof� If s�� �� satisfy ��� then

gradJn�
T s�

	

�
sT HessJn� � ��L�L�s 	

gradJn�
T s� �

	

�
s�T HessJn� � ��L�L�s� ���

holds for any s � Rn� It follows that

	s� 	 	s�� �
	

�
��kLs�k� � kLsk��� ���

Hence statements 	�� �� and �� can be directly obtained from ���� The unique�

ness� follows from the fact that HessJn� � ��L�L is positive de�nite� Q�E�D

From lemmas ��� and ���� we know that if HessJn� � ��L�L is positive

de�nite� s� is uniquely de�ned by

s� � �HessJn� � ��L�L���gradJn�� ���

To emphasize the fact that s is dependet on the parameter �� we write

s� � �HessJn� � �L�L���gradJn�� ���

which has the following property�

Proposition ��� Assume that L is bounded self	adjoint and positive de�nte�

HessJn� � �L�L is positive de�nite� Then for L � I �the identity operator��

the norm of the search direction s� is strictly decreasing as � increases from zero�

For L 
� I� the norm of the scaled search direction D
�

� s� is strictly decreasing as

� increases from zero� where D � L�L�
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Proof� First� we prove the result for L � I� It is easy to show

d

d�
ks�k �

s��
ds�
d�

�

ks�k
�

Di�erentiating the equation ��� with � for L � I� we have

HessJn� � �I�
ds�
d�

� �s��

Hence

d

d�
s� � �HessJn� � �I���s�

� HessJn� � �I���gradJn�

and

d

d�
ks�k � �

gradJn�
T HessJn� � �L�L���gradJn�

ks�k
�

Since HessJn� � �I is positive de�nite according to the assumption� the above

relation implies that ks�k is strictly decreasing as � increase from zero� The �rst

assertion follows�

Next we prove the result for L 
� I� Noticing that HessJn� � �L�L��� can

be rewritten as

HessJn� � �D��� � D� �

� D� �

�HessJn�D
� �

� � �I���D� �

� �

and if we denote D� �

�gradJn� � gn� then the search direction s� can be written

as

s� � D� �

� D� �

�HessJn�D
� �

� � �I���gn�

Hence

D
�

� s� � D� �

�HessJn�D
� �

� � �I���gn�

Note that D� �

�HessJn�D
� �

� ��I is positive de�nite� the result follows for L 
� I

by using the same technique for the proof of L � I� Q�E�D

Proposition ��� is important while implementing trust region algorithm� No

matter how large � is� the norms ks�k for L � I or kD
�

� s�k for L 
� I are strictly

decreasing as � increases from zero� The proposition also tells us that at least

the upper bound of ks�k is decreasing� Hence� the search direction can not go

everywhere�

The following theorem will show the monotonicity of the objective functional�
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Theorem ��	 Assume that L and HessJnqk�� � �L�L are positive de�nite�

qk is the current iteration point which does not satisfy the necessary conditon of

Lemma ��� and gradJnqk�� 
� 
� Then for s a solution of ����	��
� and �k

su�cently small� we have Jnqk � s� 
 Jnqk��

Proof� Since Jnq� is twice continuously di�erentiable� it follows that

Jnqk � s� � Jnqk� � gradJnqk��
T s�Oksk���

Hence it su�ces to show that there exists a constant C � 
 for which

gradJnqk��
T s � �Cksk� ���

Note that the solution s can be expressed as

s � �HessJnqk�� � �L�L���gradJn��

the result is clear� Q�E�D

From Theorem ��� we know that the trust region algorithm gives decrease in

the objective functional outside the region of convergence i�e�� we can not trust

the �trust region�� and the trust region constraint ksk � � is active� Once the

iterates are inside the region of convergence� we take the Gauss�Newton step and

the trust region constraint ksk � � becomes inactive�

� Choosing Regularization Parameter and the

Stopping Criterion

In inverse and ill�posed problems� Lagrangian parameter� also known as regular�

ization parameter see equations �� and ��� plays an important role in quanti�

fying the tradeo� between error ampli�cation due to instability and truncation

due to regularization� There are two kinds of methods� one is a a�priori one�

the other is a�posteriori one� An a�priori esimation of the Lagrangian parameter

is easily performed compared to an a�posteriori one� but an a�posteriori esima�

tion of the Lagrangian parameter is more feasible in practice� For such kind of

method� please see ��� �� 		� �� 	
� 	�� etc�� Here� we will choose the regularization

parameter in a di�erent way� According to Algorithm ��	� the trust region con�

straint is inactive if the current iterate is inside the trust region� In such case we

accept the iterate without solving the trust region subproblem� Once the current

iterate is outside the trust region� the trust region constraint is active� we have to
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solve the trust region subproblem� Hence our new way of choosing regularization

parameter is based on the relation between the current iterate sk and the trust

region �k� We will give an detail analysis in the following paragraph�

The regularization parameter stated here refers that when we solve the sub�

problem �������� the Lagrangian parameter is added� Note that solving for a

solution s� of the subproblem ������� is equivalent to solve the equations ����

���� hence the Lagragian parameter � has to be determined in each iteration� In

the present section� we will use trust region technique to determine the parameter�

which means this technique relies on the trust region radius�

We will assume that the state variable u is condaminated with error� i�e��

instead of u� we may have a perturbed version ue with error level � such that

ku� uek � ��

In such case� the solution of the problem may be very sensitive to the small

perturbations in the state variable u�

Now we introduce the trust region technique to determine the regularization

parameter�

Lemma 	 indicates that if sk is a solution of ��� and ���� then there is a

unique �k 	 
 that satis�es ��� and ���� From equations ��� and ��� we know

that the parameter �k � 
 and satis�es

ks�k�kk � �k� ���

i�e�

kHessJnqk�� � �kL
�L���gradJnqk��k � �k� ���

Thus� similar to techniques for subproblems of trust region algorithms for un�

constrained optimization see ��	�� ������ we can apply Newton�s method to the

nonlinear equation

�k�k� ��
	

ks�k�kk
�

	

�k

� �
�

The reason for considering �
� instead of the simpler equation

ks�k�kk ��k � 
 �	�

is that �k�k� is close to a linear function� Thus Newton�s method would give a

faster convergence� In fact the �rst order and second order derivatives of �k�k�

can be easily computed� hence Newton�s method can be used to calculate ���

the solution of �k�k� � 
� For simplicity� we denote A � HessJnqk�� and
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b � gradJnqk��� Applying Newton�s method to �
�� we can compute the

iteration sequence f�kg by the follwing formula

�� � �k �
ks��k�kk

bT A� �kL�L���L�LA � �kL�L���b
�	�

ks�k�kk

�
� ���

with �� the next iterate�

The following algorithm updates �k by Newton�s method applied to �
��

Algorithm ��� �Newton�s method for computing ��

Until convergence do

STEP � Factor A� �kL
�L � RTR�

STEP � Solve RTRs�k�k � �b�

STEP � Solve RTRw � s�k�k�

STEP � Let �k �� �k �
ks�k�kk

�

kwTL�Ls�k�kk
	�

ks�k�kk

k�kk
��

In this algorithm� RTR is the Cholesky factorization of matrix A � �kL
�L

with R � Rn�n upper triagular� It is necessary to safeguard �k in order to obtain

a positive de�nte A� �L�L and guarantee convergence� This in practice can be

satis�ed by observing the fact that the function �k�k� is concave and strictly

increasing� hence if we choose the initial guess value  � � 
 such that �k �� 
 


then at each iteration� Newton algorithm generates a monotonically increasing

sequence converging to the solution of �k�k� � 
�

We should also point out that� Algorithm ��	 can still be implemented even

if L is semi�de�nite as long as A � �kL
�L is positive de�nte� With the above

analysis this in fact is feasible�

For the present version of trust region iteration the discrepacy principle is an

appropriate stopping criterion for this purpose� Assume that

kue � fqtrue�k � �

and to emphasize the dependency on � we let fq�kg denote the iterates if ue instead

of u is used in the iteration� According to the discrepancy principle the iteration

is terminated at the �rst occurence of the index k � kD such that

kue � fq�kD�k � �� ���

with � � 	 being another parameter�

This stopping rule for the trust region method is well�de�ned since according

to Theorem �� kue � fq�k�k is monotonically decreasing in k�
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� Numerical Test

We give a numerical example to test the e�ciency of the proposed trust region

method� Our example is based on the steady�state di�usion equation given in

section 	�

The interval is chosen to be �
� 	�� the boundary conditions u in 	� as

u� � u� � 
�

the heat soure term gx� as

gx� � 	

and the starting parameter q� as

q� � 	�

We de�ne the exact solution as qtrue � 	 � 
���e�	�
x����	�
�

� then generate u

according to equation 	��

We apply standard piecewise linear �nite element discretization with nodes

xi � ih� h � 	n � 	�� n � �
� Mid�point quadrature is used to evaluate the

�nite element sti�ness matrix� and the discrete system is formulated as follows�

F q�u � g�

To simulate the observation data� we add Gaussian noise to the exact value u

as

ue � u� �randu��

Our problem is to estimate q given the observation data ue� We consider the

approximation problem to least squares functional Jq� � kF��q�g � uek
��

	s� �� gradJ�Ts�
	

�
HessJ�s� s�� ���

s� t� Is� � �� ���

where Is� � �
�
kLsk�� L is the discrete one�dimensional Laplacian� Trust region

Algorithm ��	 is implemented to solve the above problem� The results are shown

in �gure 	!�gure ��
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In all the �gures� we choose the initial trust region radius as �� � 	�
� the

initial guess value of � as 
�	� the dominant parameter � as 	�
	� The error

levels we used and the iterations are displayed in table 	� Note that the choice

the initial guess value � is not so crucial� We have tested on other choices of �

values� say � � �� 	
 or 	

� and got the same results�

We observe from �gure � and �gure � that if the error level is small� then the

approximated solution can approximate the exact solution perfectly well�

Table � The error levels and the iterations

error level ��� iterations

�gure � �  �� ��

�gure � �  �� ��

�gure � �  ���� ��

�gure � �  ���� ��

We also perform Tikhonov regularization �� to solve the di�usion equation�
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The stabilizer �q� is chosen as �
�
kLqk�� L is the discrete one�dimensional Lapla�

cian� We use quasi�Newton iteration to minimize Tikhonov functional

	

�
kF��q�g � uek

� � ��q�

and the computational results are shown in �gure �!�gure �� The error levels we

used and the iterations are displayed in table �� We use an a�priori estimation of

the regularization parameter �� In all of the �gures �!�� we choose the regulariza�

tion parameter � as 
�	� the dominant parameter � as ��
� Note that this choice

of the regularization parameter is crucial� It can not be too large or too small� If

� is too large� its solution may be far from the noise�free solution since the new

problem is a poor approximation to the original problem� if � is too small� the

in"uence of the data errors may cause instabilities� We can see this phenomena

from �gures �� � and �gure 	
� We add the same noise level � � 
�
	 in these

�gures� In �gure � we choose � � ��
� in �gure 	
 we choose � � 	�
� 	
��� If

� is larger than ��
 or smaller than 	�
� 	
��� the results will be more worse�
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Table � The error levels and the iterations

error level ��� iterations

�gure � �  �� �

�gure � �  �� �

�gure � �  ���� �

�gure � �  ���� �

�gure � �  �� �

�gure �� �  �� �

From �gure 	!�gure �� we observed that the behavior of the trust region

method and the Tikhonov regularization method is very similar� They are both

stable methods� We also observed from �gure �!�gure � and �gure �!�gure �

that if the error level is small� the solution obtained by trust region method can

approximate the exact solution as well as by Tikhonov regularization method�

� Conclusion and Future work

The numerical experiment illustrates that the trust region method is stable for

solving ill�posed problems� at least for distributed parameter identi�cation prob�

lem concerned in this paper� We do not claim that the trust region algorithm

is better than Tikhonov regularization� which has been developed for about �


years starting from the basic works by Tikhonov� But at least it can give a com�

parative results� We may conclude that the trust region technique is suitable

for regularizing ill�posed problems� But how to prove the regularity of the trust

region algorithm remains an interesting topic� we will give a further research later�
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