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Abstract. This paper is concerned with the ill-posed problem of
identifying a parameter in an elliptic equation. Its solution is obtained
by applying trust region method, which exhibits attractive theoretical
convergence properites and seems promising. Numerical experiment
is given to illustrate the efficiency of the proposed method.

Key Words. parameter identification, ill-posed problems, trust re-
gion.

AMS Subject Classifications: 65K10, 35R30, 35R25, 65J15, 65J20

1 Introduction

Parameter identification problems play an important role in many applications
in science and industry (see [1, 3]). By parameter identification, we refers that
the estimation of coefficients in a differential equation from observations of the
solution to that equation. We call the coefficients the system parameters, and the
solution and its derivatives the state variables. The forward problem is to com-
pute the state variables given the system parameters and appropriate boundary
conditions, which is a well-posed problems. However in parameter identification,
the problems is typically ill-posed (see [5]).

*Partially supported by Chinese NSF grant 19731010 and the Knowledge Innovation Pro-
gram of CAS
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For example, we consider the problem of identifying a distributed parameter
q = ¢(x) in the one-dimentional steady-state diffusion equation in the form

with Dirichlet boundary conditions
u(0) = ug, u(l) = us.

This is used to model for example, the steady-state temperature distribution
within a thin metal rod (see [12]). Another example is the inverse groundwater
filtration problem of reconstructing the diffusitivity ¢ of a seidment from mea-
surements of the piezometric head u in the steady state case (see [1] for further
applications). We take the former case as our example. In this setting, the state
variable is the temperature distribution u(z), = € (0, 1), the system parameters
are diffusion coefficient ¢(z) and the heat source term ¢(z). The inverse problems
stated here is determining parameter ¢(x) by giving ¢g(z) and u(z) for x € [0, 1].
For sake of simplifying the notations, we outline the problem in the abstract
operator form
Flq)u =g, (2)
where F'(q) represents a parameter-dependent differential operator from the pa-
rameter space () to the state space U, g € () represents the distributed parameter
to be estimated, and u € U represents the correspoinding state variable. In case
of the above example, ¢ represents the diffusion coefficient, and

F(q) ==V (¢V()).

Since u is the observation data, therefore, it may contain noise. Assume that
the observed data can be expressed as

Ue =u+e (3)

with Gaussian noise e.

Because of the ill-posedness of the problem (1), some kind of regularization
technique has to be applied (see [5, 13, 24]). Perhaps Tikhonov regularization
method (see [9, 20]) is the most well-known method for dealing with such kind of
problems.

Given the regularization parameter o > 0, choose ¢* € @) to solve the uncon-
strained minimization problem

min M°[q] := | F(g)u. - glI* + ofla], (4)
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where o > 0 is called the regularization parameter and ||¢||? serves as the stabi-
lizer.

Assume the forward problem solving for u is well-posed, then we can denote
the solution by

f(q) = u=F""(q)g. (5)
Clearly we want to minimize the following constrained functional
1
Jacala) = 5l = el (6
s. t. F(qQu=g. (7)

By (5), problem (6)-(7) is equivalent to the unconstrained regularized least

squares minimization problem

min Jycq(a) = 517 (a) — well ©)

Certainly we can use the Tikhonov regularization to (5), for which, we have

the following minimization problem:

min Jyeq(a) = 5 1£(a) — el +aflo), (9)

where 6(q) is a regularized fuctional whose duty is to impose stability, o > 0 is a
regularization parameter.

This paper will deal with the problem in a different way: i.e., we use some
kind of approximation to the original problem (8), then the trust region technique
is used.

2 Finite Dimensional Approximation: Trust Re-
gion Method

First we introduce the trust region method in a general way. Trust region meth-
ods are a group of methods for ensuring global convergence while retaining fast
local convergence in optimization algorithms. For example, we consider the min-
imization problem

min f(x). (10)

TER™
In trust region methods, we first choose a trial step length A, and then use the
quadratic model to select the best step of (at most) this length for the quadratic
model by solving

min (. +8) = [(x) + (9(s), ) + 5 (H&©), (1)
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s. b [[€]] < A (12)

The trial step length A, is considered an estimate of how far we trust the quadratic
model, hence it is called a trust radius and the resultant method is called a trust
region method.

In this section, we will consider the approximation minimization problem (8)
by utilizing the trust region technique mentioned above.

As a rule, the numerical solution of the fundamental problem would be im-
possible without the use of computers. In general, the traditional way of imple-
mentation is to perform a finite-dimentional approximation of the problem under
considerations.

Let P, denote a projection of () onto an n-dimentional subspace @,, i.e.,
P,:Q — Q, and P, : ), — Q, which possess a number of remarkable
properties:

(1) the operators P, and P, are continuous for all n;

(2) P,P, = I,,, where I, is the identity operator on the space Xy;

(3) P,P.q € D(F) for any ¢ € D(F) and all positive integers n.

Similarly, let R,, denote a projection of U onto an m-dimentional subspace
Up, ie., Ry : U — U, and R,, : U,, — U. Now we can define F,,,, the finite
approximation to the nonlinear operator F":

Fon(@Qu = R, F(P,q)u. (12)

Now in finite dimensional case, the minimization problem is in the form

) 1
min Joeq, (¢) = 5llu = uell, (13)
s.t. Fun(@)u=g. (14)
Furthermore, if we denote f..(q) = F,;}(q)g, (13)-(14) can be transformed into

the following unconstrained minimization problem

1
min JqGQn(Q) = §||fmn(Q) - ue||2' (15)

Since F' is differentiable, each F,,,, is differentiable. Let us denote J,eq, (¢) by
Jy, or J,,(q), the gradient of the functional J,eq, (¢) by grad(.J,), the approximate
Hessian of the functional Jyeq, (¢) by Hess(J,,). At each iteration, a trial step is
calculated by solving the subproblem

1
rgén or(s) = grad(J,)ts + i(Hess(Jn)ks, s), (16)
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s.t. I(s) < Ay, (17)

in finite spaces @, and U,,. For simplicity, we assume that m = n. In the above
expression, I(s) denotes some kind of modular. For example, we can take I(s) as
LlIs|[2.. Here, for our purpose, we take I(s) as £||Ls||?, where L denotes some kind
of differential operator, which is bounded, self-adjoint positive definite. In (16)-
(17), grad(J,); is the gradient at the current approximate solution, Hess(J,)
is an n X n symmetric matrix which approximates the Hessian of J,cq,(¢) and
Ay > 0 is a trust region radius. Let s; be a solution of (16)-(17). The predicted
reduction is defined by the reduction in the approximate model, i.e.,

Predy = ¢r(0) — dr(sk) = —r(sk)- (18)

Unless the current point gy is a stationary point and Hess(.J,,) is positive semi-
definite, the predicted reduction is always positive. The actual reduction is the
reduction in the objective function

Aredy = Jyeq, (k) — Jyeq. (ar + sk)- (19)
And we define the ratio between the actual and the predicted reduction by
Ared;,
= 20
T Predy, (20)

which is used to decide whether the trial step is acceptable and to adjust the new
trust region radius.

With the above analysis, we generate the trust region algorithm for solving
parameter identification problem as follows.

Algorithm 2.1 (Trust region algorithm for parameter identification problem,)

STEP 1 Given the initial guess value g € R", A1 >0,0< 3 <1y <1 <1,
0§7’0§7’2<1,7—2>0,k221;

STEP 2 If the stopping rule is satisfied then STOP; Else, solve (16)-(17)

giving Sk;
STEP 3 Compute ry;

_ qk Zf Tk S 70,
Tet1 = { qr + Sk otherwise; (21)

Choose Ak that satisfies

_ [73]|sk||, a QK] if TR < T2,
Bkt = { [Ag, T1A] otherwise; (22)
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STEP 4 Evaluate grad(J,), and Hess(Jy)g; k:=k+1; GOTO STEP 2.

The constant 7; (i = 0,---,4) can be chosen by users. Typical values are
T0o=0, 1 =2, =13 =0.25, 74 = 0.5. For other choices of those constants,
please see [6], [7], [14], [17], etc.. The parameter 7y is usually zero (see [6], [18])
or a small positive constant (see [4] and [19]). The advantage of using zero 7y is
that a trial step is accepted whenever the objective function is reduced. Hence
it would not throw away a “good point”, which is a desirable property especially
when the function evaluations are very expensive (see [21]).

In STEP 2, the stopping rule is based on the so-called discrepancy principle,
which will be stated in the next section.

There are several ways to evaluate the gradient of the leat squares cost func-
tional, say, finite differences method, adjoint or costate methods (see [1], [3],
[23]). For finite differences method, for example, assuming a discretization of the
parameter of the form

g=> iy,
i=1

can be obtained, then the gradients can be approximated by

(grad(J(q))); ~ Jnlg + hﬂ]f:) - Jn(‘J), i=1,2,---n, (23)

where h; is a relatively small scalar compared to the i component of the dis-
cretized parameter ¢q. For distributed parameter identification, finite difference
gradient computations are expensive. From equations (13)-(14) we know each
gradient evaluation reqiures n evaluations of f,,,(¢) = F,.!(¢)g, and each com-
putation of F !(g) entails the approximate solution of a differential equation.
When n is large, gradient approximations based directly on (23) are extremely
expensive, requiring n + 1 evaluations of the functional .J,(¢), and hence n + 1
solutions of the equation (2).

Adjoint or costate methods for parameter identification were introduced by
Chavant and Lemonier (see [3]). These kinds of methods can remarkably reduce
the cost of gradient evaluation. Consider the least squares problem:

Tu(@) = 2 o) — el (24)

Letting res(q) = fumn(q)—u. denote the residual and using the fact that = F,,, (¢+
P,

he;)|h=o = dei, e obtain a representation for the components of the gradient
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of J,(¢q). Fori=1,2,--- n,

(grad(a(@))i = 2 Jnla + el
= (o fona R o, res(a)

— (@) g res(o)

_ (@
-

€U, U)a
where u solves the state equation (14) and v solves the adjoint or costate equation

Fon(@)v = —res(q).

In the above expression, F)y = stands for the adjoint of the operator F,,,,.

Compared with the finite difference computation (23), the costate gradient
computation requires only one inversion of the operator F,,(¢q), together with
one inversion of its adjoint.

Now we turn to Hessian computations. We use Gauss-Newtion method to
approximate the exact Hessian of J,cq,(¢). For ease of notation, we simply
denote Hessian the exact Hessian of J,eq,(¢). In context of the least squares
functional (24), its Hessian can be expressed as

: d? finn
Hessian = Hess(J,(q)) + i res(q), (25)
where p p
Hess(1,(0) = (D (0,

Hess(J,(q)) is the so-called Gass-Newton approximation to the Hessian. This
evaluation has some computational advantages. First, it can sometimes be much

easier to compute than the full Hessian, since it does not involve the second

dz fmn
dq2 )

sition 2.4 in the following context, we can conclude that the scaled trust region

derivative term which has a tensor representation. Moreover, from Propo-
step is a strict decent direction if the first derivative % has full rank. Even if
dfd% does not have full rank, we can adjust the Lagrangian parameter «, such
that the trust region step is a decent direction.

Take @, = U,, = R", then for subproblem (16)-(17), we have the following

lemma.
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Lemma 2.2 A vector s* € R" is a solution of the problem

1
m7'12n ¢(s) := grad(J,)"'s + §(H€SS(Jn)S, s), (26)
sERn
s. t. I(s) <A, (27)
where 1(s) = %||Ls|]?, L is a bounded self-adjoint positive semi-definite linear

operator, grad(J,) € R", Hess(J,) € R™™ is a symmetric matriz, and A > 0,
if and only if there exists a* > 0 such that

(Hess(J,) + o L*L)s* = —grad(J,) (28)
and that Hess(J,) + o*L*L is positive semi-definite, I(s*) < A and
a*(A—1I(s")) =0. (29)

Proof. Equations (28)-(29) are just the KKT conditions of the optimization
problem (26)-(27). It remains to show Hess(.J,)+a*L*L is positive semi-definite.
Assume that s* # 0. Since s* solves (26)-(27), it also solves min{¢(s) : I(s) =
I(s*)}. Tt follows that ¢(s) > ¢(s*) for all s such that I(s) = I(s*). This
inequality together with (28) gives

1
—s"(Hess(J,) + a*L*L)s* + §(Hess(,]n)s, s) >

1
—s*"(Hess(J,) + o L*L)s* + §(H688(Jn)8*, s"). (30)

Rearranging terms in (30) gives
1 * T * T % * 1 2 * |12
5(5 —s) (Hess(J,) +a*L*L)(s* — s) > 504(||L5|| —[|Ls*]|?) =0 (31)

for all s such that I(s) = I(s*). Since s # 0, it follows from (31) that Hess(J,)+
a*L*L is positive semi-definite. If s* = 0, it follows from (28) that grad(.J,,) = 0.
Therefore s* = 0 solves min{%(Hess(J,)s,s) : I(s) < A} and we must conclude
that Hess(.J,) is positive semi-definite. Since a* > 0 is necessary, and hence
Hess(J,) + a*L* L is positive semi-definite. Q.E.D

Lemma 2.2 establishes necessary conditions concerning the pair o, s* when
s* solves (26)-(27). Our next result establishes sufficient conditions that will
ensure s is a solution to (26)-(27).
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Lemma 2.3 Let a* € R, s* € R" satisfy
(Hess(J,,) + o L*L)s* = —grad(J,) (32)

with Hess(J,) + «*L*L is positive semi-definite. Then we have the following
results:
(1) If & =0 and I(s*) < A then s* solves (26)-(27);
(2) If I(s*) = A then s* solves
o(s*) = min{p(s) : I(s) = A};

(3) If a* > 0 and I(s*) = A then s* solves (26)-(27). Furthermore, if
Hess(J,) + a*L*L is positive definite then s* is unique in each of cases (1),

(2) and (3).

Proof. If s*, o* satisfy (32) then

1
grad(J,)"'s + §ST(H655(Jn) +a*L*L)s >

1
grad(J,)Ts* + §S*T(H688(Jn) +a*L*L)s" (33)
holds for any s € R". It follows that

¢(s) = o(s") + %O/‘(HLS*II2 — || Ls|f*). (34)

Hence statements (1), (2) and (3) can be directly obtained from (34). The unique-
ness, follows from the fact that Hess(J,) + o*L*L is positive definite. Q.E.D

From lemmas 2.2 and 2.3, we know that if Hess(J,) + o*L*L is positive
definite, s* is uniquely defined by

s* = —(Hess(J,) + o L*L) " grad(J,,). (35)
To emphasize the fact that s is dependet on the parameter o, we write
$a = —(Hess(J,) + aL*L) " grad(J,), (36)
which has the following property:

Proposition 2.4 Assume that L is bounded self-adjoint and positive definte,
Hess(J,) + aL*L is positive definite. Then for L = I (the identity operator),
the norm of the search direction s, s strictly decreasing as « increases from zero;
For L # I, the norm of the scaled search direction Désa 15 strictly decreasing as
a increases from zero, where D = L*L.
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Proof. First, we prove the result for L = I. It is easy to show

L = Co'd)

- SOé L

da I5al
Differentiating the equation (36) with a for L = I, we have

ds,,
H n I)— = —s,.
( ess(J)+a)da s

Hence
— 5, = —(Hess(J,)+al) s,
= (Hess(J,) +al)*grad(J,)

and

d grad(J,)T (Hess(J,) + aL*L) 3grad(.J,)

——llsall = =
: I 5all

da

Since Hess(.J,) + al is positive definite according to the assumption, the above
relation implies that ||s,|| is strictly decreasing as « increase from zero. The first
assertion follows.

Next we prove the result for L # I. Noticing that (Hess(J,) + aL*L)~! can

be rewritten as
(Hess(J,) +aD)™ = D™*(D 2 Hess(J,)D™? +al) "' D2,

and if we denote D_%gmd(,]n) = g, then the search direction s, can be written
as

So =D 2(D 2Hess(J,)D 2 +al) g,
Hence
D?sq = (D 2Hess(J,)D "2 + al) 'g,.

Note that D~z Hess(J,) D~z +al is positive definite, the result follows for L # I
by using the same technique for the proof of L = 1. Q.E.D

Proposition 2.4 is important while implementing trust region algorithm. No
matter how large o is, the norms ||s,|| for L = I or | D2s,]| for L # I are strictly
decreasing as « increases from zero. The proposition also tells us that at least
the upper bound of ||s,|| is decreasing. Hence, the search direction can not go
everywhere.

The following theorem will show the monotonicity of the objective functional.
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Theorem 2.5 Assume that L and Hess(J,(qx)) + aL*L are positive definite,
qr 1S the current iteration point which does not satisfy the necessary conditon of
Lemma 2.2 and grad(J,(qr)) # 0. Then for s a solution of (26)-(27) and Ay
sufficently small, we have J,(qx + s) < Jp(qk)-

Proof. Since J,(q) is twice continuously differentiable, it follows that
To(ar + 8) = Ju(ar) + grad(Ju(a))"s + O([[s]|*).
Hence it suffices to show that there exists a constant C' > 0 for which
grad(Ja(ar))"s < =C|ls|. (37)
Note that the solution s can be expressed as
s = —(Hess(Ju(qr)) + aL*L) " grad(J,),

the result is clear. Q.E.D

From Theorem 2.5 we know that the trust region algorithm gives decrease in
the objective functional outside the region of convergence (i.e., we can not trust
the “trust region”) and the trust region constraint ||s|| < A is active. Once the
iterates are inside the region of convergence, we take the Gauss-Newton step and
the trust region constraint ||s|| < A becomes inactive.

3 Choosing Regularization Parameter and the
Stopping Criterion

In inverse and ill-posed problems, Lagrangian parameter, also known as regular-
ization parameter (see equations (4) and (9)) plays an important role in quanti-
fying the tradeoff between error amplification due to instability and truncation
due to regularization. There are two kinds of methods: one is a a-prior: one,
the other is a-posteriori one. An a-prior: esimation of the Lagrangian parameter
is easily performed compared to an a-posteriori one, but an a-posteriori esima-
tion of the Lagrangian parameter is more feasible in practice. For such kind of
method, please see [2, 5, 11, 8, 10, 16] etc.. Here, we will choose the regularization
parameter in a different way. According to Algorithm 2.1, the trust region con-
straint is inactive if the current iterate is inside the trust region. In such case we
accept the iterate without solving the trust region subproblem. Once the current
iterate is outside the trust region, the trust region constraint is active, we have to
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solve the trust region subproblem. Hence our new way of choosing regularization
parameter is based on the relation between the current iterate s; and the trust
region Ay. We will give an detail analysis in the following paragraph.

The regularization parameter stated here refers that when we solve the sub-
problem (26)-(27), the Lagrangian parameter is added. Note that solving for a
solution s* of the subproblem (26)-(27) is equivalent to solve the equations (28)-
(29), hence the Lagragian parameter « has to be determined in each iteration. In
the present section, we will use trust region technique to determine the parameter,
which means this technique relies on the trust region radius.

We will assume that the state variable u is condaminated with error, i.e.,
instead of u, we may have a perturbed version u, with error level § such that

|lu — ue|| <.

In such case, the solution of the problem may be very sensitive to the small
perturbations in the state variable wu.

Now we introduce the trust region technique to determine the regularization
parameter.

Lemma 1 indicates that if s is a solution of (26) and (27), then there is a
unique oy > 0 that satisfies (28) and (29). From equations (35) and (36) we know
that the parameter ay > 0 and satisfies

||8ak,k|| = Ay, (38)

i.e.

|(Hess(Ju(qr)) + axL*L) tgrad(J,(q))|| = Ak (39)

Thus, similar to techniques for subproblems of trust region algorithms for un-
constrained optimization (see [21], [22]), we can apply Newton’s method to the

nonlinear equation
1 1

Tplag) i= ——— — —. (40)
[saiell A
The reason for considering (40) instead of the simpler equation
[0l = Ak =0 (41)

is that T'y(ay) is close to a linear function. Thus Newton’s method would give a
faster convergence. In fact the first order and second order derivatives of I'y ()
can be easily computed, hence Newton’s method can be used to calculate o,
the solution of I'y(ax) = 0. For simplicity, we denote A = Hess(.J,(qx)) and
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b = grad(J,(qx)). Applying Newton’s method to (40), we can compute the
iteration sequence {«a;} by the follwing formula

 bT(A+ apL*L)2L*L(A + akL*L)—lb[

with o the next iterate.

S e,k
_ 1 _ k> 42

The following algorithm updates oy by Newton’s method applied to (40).
Algorithm 3.1 (Newton’s method for computing «)

Until convergence do

STEP 1 Factor A+ o, L*L = RTR;
STEP 2 Solve RT Rs,, r = —b;
STEP 3 Solve RT Rw = Sagks

s 2 S
STEP j Let oy = oy — ekl (1 %)

lwlL*Lsq, kll

In this algorithm, RTR is the Cholesky factorization of matrix A + ayL*L
with R € R™"™ upper triagular. It is necessary to safeguard ay in order to obtain
a positive definte A + aL*L and guarantee convergence. This in practice can be
satisfied by observing the fact that the function I'y(ay) is concave and strictly
increasing, hence if we choose the initial guess value & > 0 such that ['y(&) < 0
then at each iteration, Newton algorithm generates a monotonically increasing
sequence converging to the solution of T'y(ay) = 0.

We should also point out that, Algorithm 3.1 can still be implemented even
if L is semi-definite as long as A + o, L*L is positive definte. With the above
analysis this in fact is feasible.

For the present version of trust region iteration the discrepacy principle is an
appropriate stopping criterion for this purpose. Assume that

||ue - f(qtrue)H S 5

and to emphasize the dependency on & we let {qf } denote the iterates if u, instead
of u is used in the iteration. According to the discrepancy principle the iteration
is terminated at the first occurence of the index k& = kp such that

lue = f(ak, )l < 70 (46)

with 7 > 1 being another parameter.
This stopping rule for the trust region method is well-defined since according
to Theorem 4, ||u, — f(q?)|| is monotonically decreasing in k.
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4 Numerical Test

We give a numerical example to test the efficiency of the proposed trust region
method. Our example is based on the steady-state diffusion equation given in
section 1.

The interval is chosen to be [0, 1], the boundary conditions u in (1) as
uy = up = 0,

the heat soure term g(z) as

and the starting parameter ¢, as
q1 = 1.

We define the exact solution as guue = 1 + 0.75¢7°0@=025)? then generate u
according to equation (1).

We apply standard piecewise linear finite element discretization with nodes
x; = th, h = 1/(n+ 1), n = 50. Mid-point quadrature is used to evaluate the
finite element stiffness matrix, and the discrete system is formulated as follows:

F(qu=g.

To simulate the observation data, we add Gaussian noise to the exact value u
as

Uue = u + orand(u).

Our problem is to estimate ¢ given the observation data u.. We consider the

approximation problem to least squares functional J(q) = [|[F~1(q)g — u|*:
1
o(s) = grad(J)"s + i(Hess(J)s, s), (47)
s. t. I(s) <A, (48)
where I(s) = 1||Ls||?, L is the discrete one-dimensional Laplacian. Trust region

Algorithm 2.1 is implemented to solve the above problem. The results are shown
in figure 1-figure 4.
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Figure 2

True (--) and Estimated (-) Parameters

Figure 3

In all the figures, we choose the
initial guess value of o as 0.1, the dominant parameter 7 as 1.01.

Figure 4

initial trust region radius as A; = 1.0, the

The error

levels we used and the iterations are displayed in table 1. Note that the choice

the initial guess value « is not so crucial. We have tested on other choices of «

values, say o = 5, 10 or 100, and got the same results.

We observe from figure 3 and figure 4 that if the error level is small, then the

approximated solution can approximate the exact solution perfectly well.

Table 1 The error levels and the iterations

error level (§) | iterations
figure 1 d=2% 15
figure 2 d=1% 16
figure 3 d=0.5% 18
figure 4 0=0.1% 22

We also perform Tikhonov regularization (9) to solve the diffusion equation.
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The stabilizer 6(g) is chosen as 3||Lg||?, L is the discrete one-dimensional Lapla-

cian. We use quasi-Newton iteration to minimize Tikhonov functional

1
§IIF*1(Q)9 — uc||* + af(q)

and the computational results are shown in figure 5-figure 8. The error levels we
used and the iterations are displayed in table 2. We use an a-priori estimation of
the regularization parameter . In all of the figures 5-8, we choose the regulariza-
tion parameter « as 0.1, the dominant parameter 7 as 2.0. Note that this choice
of the regularization parameter is crucial. It can not be too large or too small. If
« is too large, its solution may be far from the noise-free solution since the new
problem is a poor approximation to the original problem; if « is too small, the
influence of the data errors may cause instabilities. We can see this phenomena
from figures 6, 9 and figure 10. We add the same noise level § = 0.01 in these
figures. In figure 9 we choose o = 5.0, in figure 10 we choose o = 1.0 x 1074, If
« is larger than 5.0 or smaller than 1.0 x 10~*, the results will be more worse.

True (—-) and Estimated (-) Parameters True (—-) and Estimated (-) Parameters
T T T T T T T T T

0 01 02 03 04 0.5 0.6 0.7 0.8 0.9 1 0 01 02 03 04 0.5 0.6 0.7 0.8 0.9 1

Figure 5 Figure 6

True (--) and Estimated (-) Parameters True (--) and Estimated (-) Parameters
19 T T T T T 19 T T T T T

Figure 7 Figure 8
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True (—-) and Estimated (-) Parameters True (—-) and Estimated (-) Parameters
T T T T T T T T T T

Figure 9 Figure 10
Table 2 The error levels and the iterations
error level (0) iterations
figure 5 d=2% 2
figure 6 d=1% 2
figure 7 d=0.5% 3
figure 8 d=0.1% 3
figure 9 d=1% 2
figure 10 0=1% 3

From figure 1-figure 8, we observed that the behavior of the trust region
method and the Tikhonov regularization method is very similar. They are both
stable methods. We also observed from figure 3-figure 4 and figure 7-figure 8
that if the error level is small, the solution obtained by trust region method can
approximate the exact solution as well as by Tikhonov regularization method.

5 Conclusion and Future work

The numerical experiment illustrates that the trust region method is stable for
solving ill-posed problems, at least for distributed parameter identification prob-
lem concerned in this paper. We do not claim that the trust region algorithm
is better than Tikhonov regularization, which has been developed for about 40
years starting from the basic works by Tikhonov. But at least it can give a com-
parative results. We may conclude that the trust region technique is suitable
for regularizing ill-posed problems. But how to prove the regularity of the trust

region algorithm remains an interesting topic, we will give a further research later.

Acknowledgment. The authors would like to thank the referee’s comments on
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