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Abstract

The quadratic assignment problem (QAP) is one of the great challenges in combinatorial
optimization. Linearization for QAP is to transform the quadratic objective function into
a linear one. Numerous QAP linearizations have been proposed, most of which yield mixed
integer linear programs (MILP). Kauffmann and Broeckx’s linearization (KBL) is the current
smallest one in terms of the number of variables and constraints. In this paper, we give a new
linearization, which has the same size as KBL. Our linearization is more efficient in terms
of the tightness of the continuous relaxation. Furthermore, the continuous relaxation of our
linearization leads to an improvement to the Gilmore-Lawler bound (GLB). We also give a
corresponding cutting plane heuristic method for QAP and demonstrate its superiority by
numerical results.

Keywords: quadratic assignment problem, linearization, mixed integer linear program,
cutting plane

1 Introduction

The quadratic assignment problem (QAP) is one of the great challenges in combinatorial opti-
mization. For comprehensive surveys of QAPs, we refer to [7, 11, 19]. A nice review on recent
advances is given by [3]. The following formulation of QAP was used initially by Koopmans and
Beckmann[16].

QAP : min f(X) =
∑

i,j,k,l

aikbjlxijxkl (1.1)

s.t.
∑

j

xij = 1, i = 1, ..., n, (1.2)

∑

i

xij = 1, j = 1, ..., n, (1.3)

xij ∈ {0, 1}, i, j = 1, ..., n, (1.4)

∗partly supported by Chinese NSF grant 10231060 and the Knowledge Innovation Program of CAS

1



where A = (aik)n×n corresponds to the flow matrix and B = (bjl)n×n corresponds to the distance
matrix in the facility location application. xij = 1 means facility i being placed in location j.
For simplicity we sometimes use the notation X = (xij)n×n ∈ Πn to represent (1.2), (1.3), (1.4),
where Πn denotes the set of n×n permutation matrices. In this paper, the optimal value of the
QAP problem (1.1)-(1.4) is denoted by QAP(A,B).

It is well known that QAP is NP-hard [20]. In that paper it was also proved that finding
an ε−approximate solution of QAP is also NP-hard. Many well-known NP-hard problems such
as travelling salesman problem, the graph partitioning problem, the maximum clique problem,
graph isomorphism and largest common subgraph problem can be reformulated as special QAPs.
The practice also shows that QAP is extremely difficult to solve to optimality. Problems of size
n ≥ 20 are currently considered huge problems.

Linearization is the first attempt to solve QAP and is achieved by introducing new variables
and new linear (and binary) constraints. Then existing methods for (mixed) linear integer
programming (MILP) can be applied. MILP formulations also provide linear programming
(LP) relaxations which give lower bounds. In this paper, we will give a new linearization, and
show that it has the same size as Kauffmann and Broeckx’s linearization(KBL), which is the
current smallest one in terms of the number of variables and constraints. Our linearization is
more efficient when the continuous relaxation is tight. Moreover, the continuous relaxation of
our linearization leads to an improvement of the famous Gilmore-Lawler bound(GLB).

This paper is organized as follows. In section 2 we review some canonical linearizations.
In section 3 we give our new linearization and its properties. The bound obtained from the
continuous relaxation of our linearization is discussed in section 4. A cutting plane method
based on the new model is given in section 5. Concluding remarks are made in section 6.

2 The canonical linearizations

There are mainly four LP relaxations of QAP, Lawler’s linearization [13] as the first, Kauffmann
and Broeckx’s linearlization [15], Frieze and Yadegar’s linearization [12] and that of Adams and
Johnson [1]. Here we only list the standard one given by [1] and the current smallest one (in
the sense that it has the smallest number of variables) given by [15].

2.1 The standard linearization

Defining new variables yijkl = xijxkl results in Adams and Johnson’s linearization [1]

min
∑

i,j

∑

k,l

aikbjlyijkl (2.1)

s.t.
∑

i

yijkl = xkl, j, k, l = 1, ..., n,

∑

j

yijkl = xkl, i, k, l = 1, ..., n,

yijkl = yklij , i, j, k, l = 1, ..., n, (2.2)
yijkl ≥ 0, i, j, k, l = 1, ..., n,

X = (xij)n×n ∈ Πn.
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The above formulation contains n2 binary variables, n4 continuous variables and n4 + 2n3 +
2n constraints in addition to the nonnegative constraints on the continuous variables. This
formulation could be reduced, see [3, 8] and the references therein.

2.2 The current smallest linearization

For convenience we make the following assumption.

Assumption 2.1. aikbjl ≥ 0 for all i, j, k, l = 1, 2, ..., n.

This assumption does not lose generality because the coefficient products aikbjl can be guaran-
teed nonnegative by adding a sufficiently large constant to all the coefficients aik and bjl without
changing the optimal solution.

Under Assumption 2.1, Kauffmann and Broeckx[15] introduced n2 new real variables

yij := xij

∑

kl

aikbjlxkl, i, j = 1, ..., n,

and substituted them into the objective function (1.1). Then they showed that QAP is equivalent
to the following mixed integer linear program (MILP).

KBL(A,B) = min
∑

i,j

yij (2.3)

s.t. uijxij +
∑

k,l

aikbjlxkl − yij ≤ uij , i, j = 1, ..., n, (2.4)

yij ≥ 0, i, j = 1, ..., n, (2.5)
X = (xij)n×n ∈ Πn, (2.6)

where the constants uij satisfy

uij ≥
∑

k,l

aikbjlxkl for all X = (xij)n×n ∈ Πn. (2.7)

This formulation employs n2 real variables, n2 binary variables and 3n2+2n constraints including
2n2 nonnegative constraints.

In [15], Kauffmann and Broeckx proved the following result. The proof can also be found in
[6].

Theorem 2.1. Under Assumption 2.1,

QAP (A,B) = KBL(A,B) .

The constants uij can be chosen among the following formulas:

uij = max
X∈Πn

∑

k,l

aikbjlxkl; (2.8)

uij =
∑

k,l

aikbjl; (2.9)

uij = n · (max
k

aik) · (max
l

bjl). (2.10)
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(2.8) is the tightest one, and it seems to require solving n2 linear assignment problems (LAP).
But we can compute (2.8) without solving LAPs, due to the following well-known result of
Hardy, Littlewood, and Pólya [14].

Theorem 2.2. Given two n-dimensional real vectors a = (ai), b = (bi) such that 0 ≤ a1 ≤ a2 ≤
... ≤ an and b1 ≥ b2 ≥ ... ≥ bn ≥ 0, the following inequalities hold for any permutation φ of
1, 2, ..., n: ∑

i

aibi ≤
∑

i

aibφ(i) ≤
∑

i

aibn−i+1. (2.11)

It is straightforward to see that the nonnegativity assumption on the vectors can be removed.
Define the maximal vector product and the minimal vector product by

〈a, b〉+ = max
P∈Πn

〈a, Pb〉, 〈a, b〉− = min
P∈Πn

〈a, Pb〉, (2.12)

respectively. From Theorem 2.2, one can easily compute the maximal vector product and the
minimal vector product of any two vectors. Consequently (2.8) can be obtained because it is
exactly the same as

uij = 〈ai·, bj·〉+. (2.13)

3 A new linearization

First we rewrite the objective function of QAP (1.1) as

f(X) =
∑

i,j,k,l

aikbjlxijxkl =
∑

i,j

(
∑

k,l

aikbjlxkl)xij . (3.1)

Our work is based on the following well-known result [2, 18].

Lemma 3.1. The convex envelope of the bilinear function xy over the domain [xL, xU ]×[yL, yU ]
is given by

max{xLy + yLx− xLyL, xUy + yUx− xUyU}. (3.2)

Directly applying the above lemma, we have:

Corollary 3.1. For X = (xij) ∈ Πn

(
∑

k,l

aikbjlxkl)xij ≥ max{lijxij , uijxij − uij +
∑

k,l

aikbjlxkl}, (3.3)

where uij is the corresponding upper bound defined by (2.7), (2.8), (2.9) or (2.10), and the lower
bounds defined analogously

lij = min
X∈Πn

∑

k,l

aikbjlxkl = 〈ai·, bj·〉−. (3.4)

Actually, as pointed out by a referee, (3.3) can be obtained more easily. Indeed, the left side of
the inequality is not less than the first term in the right side by the definition of lij and it is not
less than the second term due to Kauffmann and Broeckx [15].
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Thus, by the formulation (3.1) and the above corollary, we can derive the following new
linearization.

XY L1(A,B) = min
∑

i,j

yij (3.5)

s.t. yij ≥ lijxij , i, j = 1, 2, ...n, (3.6)

yij ≥ uijxij − uij +
∑

k,l

aikbjlxkl, i, j = 1, 2, ...n, (3.7)

X = (xij)n×n ∈ Πn. (3.8)

Because X ∈ Πn, we can rewrite (3.1) in the following form

f(X) =
∑

i,j





 ∑

k 6=i,l 6=j

aikbjlxkl


xij + aiibjjxij


 . (3.9)

Define

l̃ij = min
X∈Πn

∑

k 6=i,l 6=j

aikbjlxkl = 〈ãi·, b̃j·〉−, (3.10)

ũij = max
X∈Πn

∑

k 6=i,l 6=j

aikbjlxkl = 〈ãi·, b̃j·〉+, (3.11)

where ãi is the vector consisting of the (n− 1) components of ai excluding aii, and b̃i is defined
analogously. Similarly to (3.5)-(3.8), we can obtain another linearization as follows.

XY L2(A,B) = min
∑

i,j

(ỹij + aiibjjxij) (3.12)

s.t. ỹij ≥ l̃ijxij , i, j = 1, 2, ...n, (3.13)

ỹij ≥ ũijxij − ũij +
∑

k 6=i,l 6=j

aikbjlxkl, i, j = 1, 2, ...n, (3.14)

X = (xij)n×n ∈ Πn. (3.15)

The following lemma follows from Theorem 2.2 and the definitions (3.10), (3.11), (3.4) and
(2.8).

Lemma 3.2. We have the inequalities

l̃ij + aiibjj ≥ lij , i, j = 1, 2, ...n, (3.16)
ũij + aiibjj ≤ uij , i, j = 1, 2, ...n. (3.17)

Furthermore, both sides of inequality (3.16) are equal if and only if aii is the k − th largest
element in ai and bjj is the k− th smallest one in bj or vice versa for some k. Similarly, (3.17)
holds as equality if and only if both aii and bjj are the k − th largest (or the k − th smallest)
elements in ai and bi, respectively, for some k.

Using the above results, we can get the following three propositions.
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Proposition 3.1.
QAP (A, B) ≥ XY L2(A,B). (3.18)

Proposition 3.2. Under Assumption 2.1,

XY L2(A,B) ≥ XY L1(A,B). (3.19)

Proof It is sufficient to show that ((xij)n×n, (ỹij + aiibjjxij)n×n) satisfies conditions (3.6)-(3.8)
for any feasible point ((xij)n×n, (ỹij)n×n) of (3.13)-(3.15).

Let ((xij)n×n, (ỹij)n×n) be a feasible point of (3.13)-(3.15), and define

yij = ỹij + aiibjjxij , (i, j = 1, 2, ...n). (3.20)

It is easy to see that (3.8) holds as it is the same as (3.15). (3.6) follows directly from (3.16),
(3.13) and (3.20). To complete our proof, we only need to prove (3.7). For any given pair
(i, j)(i, j = 1, 2, ...n), we have xij = 1 or xij = 0 due to (3.15). First we assume that xij = 1. In
this case (3.14) implies that

ỹij + aiibjjxij ≥
∑

k 6=i,l 6=j

aikbjlxkl + aiibjjxij

=
∑

k,l

aikbjlxkl, (3.21)

where the last equality in the above relation follows from (3.15) and the fact that xij = 1. (3.21)
and (3.20) imply that (3.7) is true provided that xij = 1. Now we assume that xij = 0. In this
case, we have yij = ỹij and (3.7) reduces to

yij ≥ −uij +
∑

k,l

aikbjlxkl. (3.22)

The fact that uij is an upper bound for
∑

k,l aikbjlxkl shows that the left hand side of (3.22)
cannot be greater than zero. Because xij = 0, (3.13) and (3.20) indicate that yij ≥ 0, which
implies (3.22). This completes our proof. ¥

Proposition 3.3. Under Assumption 2.1,

XY L1(A, B) ≥ KBL(A,B). (3.23)

Proof It is easy to see that constraints (2.5) are not stronger than (3.6) when lij ≥ 0 and that
constraints (3.7) are the same as (2.4). ¥

Combining the above three propositions with Theorem 2.1, we immediately have QAP (A,B) =
XY L1(A,B) = XY L2(A, B) under Assumption 2.1.

Theorem 3.4. Under Assumption 2.1,

QAP (A,B) = XY L1(A,B) = XY L2(A,B). (3.24)

Note that our new linearizations XY L1(A,B) and XY L2(A,B) have the same size as KBL(A,B).
Some stronger properties of XY L2(A,B) are given in the next two sections.
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4 A new lower bound

From the above proof of Theorem 3.4, we see that the feasible solutions of XY L1(A,B) (XY L2(A,B))
and KBL(A, B) are the same. Now we are going to compare the tightness of their continuous
relaxations. To do so we relax the constraint set (xij)n×n ∈ Πn to its convex hull, the so-called
assignment polytope [4], which is given by

Sn = {(xij)n×n|
∑

j

xij = 1,
∑

i

xij = 1, xij ≥ 0, i, j = 1, ..., n}. (4.1)

Thus, RXY L2(A,B) is the continuous relaxation of XY L2(A,B):

RXY L2(A,B) = min
∑

i,j

(ỹij + aiibjjxij) (4.2)

s.t. ỹij ≥ l̃ijxij , i, j = 1, 2, ...n, (4.3)

ỹij ≥ ũijxij − ũij +
∑

k 6=i,l 6=j

aikbjlxkl, i, j = 1, 2, ...n, (4.4)

X = (xij)n×n ∈ Sn. (4.5)

Similarly RXY L1(A,B) and RKBL(A,B) can be defined.
First we make another assumption which is a little more restrictive than Assumption 2.1 but

is still general in practice.

Assumption 4.1. aik ≥ 0, bjl ≥ 0 for all i, j, k, l = 1, 2, ..., n and aii = bjj = 0 for all
i, j = 1, 2, ..., n.

Note that the assumption is necessary. Actually, as pointed out by a referee, the following
propositions are not generally true under Assumption 2.1. Before presenting the propositions,
we firstly give an artificial example.

Example 4.1. Let

A =




16 8 18
8 16 18
18 18 0


 , B =




2 3 5
3 3 5
5 5 19


 .

Then we have

RKBL(A,B) = 449
RXY L1(A, B) = 488
RXY L2(A, B) = 448.

Proposition 4.1. Under Assumption 4.1,

RXY L2(A,B) ≥ RXY L1(A,B). (4.6)

Proof Inequality (4.6) follows directly from Lemma 3.2 and the fact
∑

k,l

aikbjlxkl =
∑

k 6=i,l 6=j

aikbjlxkl (4.7)
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which is implied by Assumption 4.1. ¥
From Lemma 3.2, we can see that it is very likely that the feasible set of RXY L2(A,B) is

smaller than that of RXY L1(A,B). Therefore it is natural for us to expect that in most cases
(4.6) holds as an inequality, namely

RXY L2(A,B) > RXY L1(A,B). (4.8)

Due to the above proposition and the fact that both RXY L1(A,B) and RXY L2(A,B) have
the same computational complexity, in the following we only discuss RXY L2(A,B). Similarly
to Proposition 3.3 and Proposition 4.1, we have the following result.

Proposition 4.2. Under Assumption 4.1,

RXY L2(A, B) ≥ RKBL(A, B). (4.9)

Inequality (4.9) seldom holds as equality. Namely it is often the case

RXY L2(A, B) > RKBL(A, B), (4.10)

which is demonstrated by our numerical results given in Table 1. The test problems are taken
from QAPLIB [10]. From these limited results, it seems that the relaxation RKBL(A,B) is
extremely weak, which normally gives nearly zero objective function values. This also explains
why RKBL(A, B) has not been used in the literatures. In Table 1, the bounds obtained by
RXY L2(A,B) have been rounded to the corresponding minimal upper integers since the ele-
ments in A and B are integers for all the tested problems. It is encouraging to see that in 7 out
of the 8 problems the bounds derived by our relaxation are better than the bounds derived by
the famous Gilmore-Lawler relaxation [13]:

GLB(A,B) = min
∑

i,j

(l̃ij + aiibjj)xij , (4.11)

s.t. X = (xij)n×n ∈ Πn, (4.12)

where l̃ij are defined by (3.10). Some theoretical analysis on the relations between our relaxation
and the Gilmore-Lawler relaxation is given below.

Table 1. Comparison among GLB, RXY L2 and RKBL

Prob. GLB RXY L2 RKBL QAP

chr12a 7245 7457 3.3737e-16 9552
chr12b 7146 7300 1.5531e-11 9742
chr18a 6779 6885 7.7394e-14 11098
chr18b 1534 1534 2.8136e-13 1534
had14 2492 2494 5.6831e-12 2724
rou12 202272 203215 1.3209e-12 235528
rou15 298548 298956 1.2041e-15 354210
tai12a 195918 196981 6.4164e-16 224416

We observe that XY L2(A,B) (also RXY L2(A, B)) is exactly the canonical Gilmore-Lawler
bound (GLB) if we delete the constraints (3.14) from XY L2(A,B). The following theorem was
first presented in [21].
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Theorem 4.3. We have
RXY L2(A,B) ≥ GLB(A,B). (4.13)

Furthermore, we have that
RXY L2(A,B) > GLB(A,B) (4.14)

if QAP 6= GLB(A,B) and GLB(A,B) has a unique optimal solution.

Proof We only need to prove the second result since (4.13) is obvious. Let X∗ = {x∗ij} be the
unique optimal solution of GLB(A, B). Define Ỹ ∗ by

ỹ∗ij = l̃ijx
∗
ij . (4.15)

Thus, (X∗, Ỹ ∗) is also a feasible solution of (3.12), (3.13) and (3.15). Define the set ∆ =
{(i, j) | x∗ij = 1}. If

l̃ij ≥
∑

k 6=i,l 6=j

aikbjlx
∗
kl, ∀(i, j) ∈ ∆, (4.16)

it follows from the definition of l̃ij that

l̃ij =
∑

k 6=i,l 6=j

aikbjlx
∗
kl, ∀(i, j) ∈ ∆. (4.17)

Thus, we have that
∑

i,j

(
∑

k 6=i,l 6=j

aikbjlx
∗
kl + aiibjj)x∗ij =

∑

i,j

(l̃ij + aiibjj)x∗ij , (4.18)

i.e., QAP = GLB(A,B), which is a contradiction to our assumption QAP 6= GLB(A,B). Thus
there exists (i, j) ∈ ∆ for which the inequality (4.16) does not hold, which implies that

ỹ∗ij = l̃ij <
∑

k 6=i,l 6=j

aikbjlx
∗
kl. (4.19)

The above inequality contradicts (3.14). Therefore we have proved that (X∗, Ỹ ∗) is not a feasible
point of RXY L2(A,B). Consider the continuous relaxation problem

RGLB(A, B) = min
∑

i,j

(ỹij + aiibjjxij) (4.20)

s.t. ỹij ≥ l̃ijxij , i, j = 1, 2, ...n , (4.21)
X = (xij)n×n ∈ Sn. (4.22)

It is easy to see that (X∗, Ỹ ∗) is the unique optimal solution of (4.20)-(4.22). But since (X∗, Ỹ ∗)
is not a feasible point of RXY L2(A,B), it follows that RGLB(A,B) < RXY L2(A, B). Conse-
quently (4.14) follows from the fact that RGLB(A,B) = GLB(A,B). ¥

In [21], Lagrangian relaxations of XY L2(A,B) were also discussed. Moreover, a fuzzy bound
was also presented there and shown to achieve excellent numerical performance, though it is still
open whether it is a true bound for the QAP .
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5 A cutting plane method based on the new model

In some sense XY L1(A, B) is an improvement of KBL(A, B). So the algorithm [9, 15] based on
Benders’ decomposition approach can also be used here to solve XY L1(A,B) almost directly.
But the result should be more promising. We show this in detail.

Problem (3.5) can be decomposed as

min
X∈Πn

( min
y∈Y (x)

∑

i,j

yij) (5.1)

with

Y (x) := {y ∈ <n2 | yij ≥ lijxij , yij ≥ uijxij − uij +
∑

k,l

aikbjlxkl, i, j = 1, 2, ...n}. (5.2)

For fixed x we dualize the constraints of the second-stage problem miny∈Y (x)

∑
i,j yij , and denote

the dual variables corresponding to the second constraints by λij (i, j = 1, 2, ...n). Then we get
the subproblem

SP (X) : max
∑

i,j

(
∑

k,l

aikbjlxkl − uij + uijxij − lijxij)λij +
∑

i,j

lijxij (5.3)

s.t. 0 ≤ λij ≤ 1, i, j = 1, 2, ...n. (5.4)

It can easily be checked that

λij := x̃ij , i, j = 1, 2, ...n, (5.5)

is an optimal solution of the subproblem SP (X̃) because of the definition of the constants uij

and lij and the constraints 0 ≤ λij ≤ 1. The feasible solution set F of SP (X) does not depend
on the chosen vector X. Therefore let λ(t) be the incidence vectors of the extreme points of F
(which is the unit hypercube in <n2

). Introducing

c
(t)
ij :=

∑

k,l

λ
(t)
kl akiblj + λ

(t)
ij uij − λ

(t)
ij lij + lij , (5.6)

α(t) :=
∑

i,j

λ
(t)
ij uij , t = 1, 2, ..., 2n2

=: T, (5.7)

we can see that problem (5.1) is equivalent to

min
X∈Πn

max
1≤t≤T

{
∑

i,j

c
(t)
ij xij − α(t)} (5.8)

by the fact that for any fixed x the second-stage problem miny∈Y (x)

∑
i,j yij of (5.1) is a linear

programming whose dual is just (5.3)-(5.4) and the fact that the linear programming (5.3)-(5.4)
has an optimal solution at an extreme point of F . Problem (5.8) yields now the master program

MP : min z (5.9)

s.t. z ≥
∑

i,j

c
(t)
ij xij − α(t), 1 ≤ t ≤ T, (5.10)

X = (xij)n×n ∈ Πn. (5.11)

10



As in any decomposition approach the master problem is not solved for all restrictions z ≥∑
i,j c

(t)
ij xij − α(t), (1 ≤ t ≤ T ), but only for a subset {t| 1 ≤ t ≤ r} of indices. We denote this

restricted master problem by MP (r). Getting an optimal solution X̃ for this restricted master
problem, the subproblem SP (X̃) is solved, which yields λ

(r+1)
ij := x̃ij and a new constraint

z ≥
∑

i,j

c
(r+1)
ij xij − α(r+1) (5.12)

is added to the current MP (r), which yields MP (r + 1). Then we have the following result.

Proposition 5.1. Assume that X̃ is an optimal solution of MP (r) and λ
(r+1)
ij := x̃ij. For any

s > r, X̃ cannot be an optimal solution of MP (s) unless it is the optimal solution of QAP.

Proof Denote the optimal objective function value of any master problem MP (s) by z̃s, which
is a lower bound for QAP. If X̃ is also an optimal solution of MP (s) for some s > r, it follows
that

z̃s ≥
∑

i,j

c
(r+1)
ij x̃ij − α(r+1), (5.13)

since MP (s) contains the constraint (5.12). The left-hand side of (5.13) is a lower bound for
QAP while the right-hand side of (5.13) corresponds to a feasible objective function value of
QAP (f(X̃) of (1.1)), which can be shown as follows:

∑

i,j

c
(r+1)
ij x̃ij − α(r+1)

=
∑

i,j

(
∑

k,l

λ
(r+1)
kl akiblj + λ

(r+1)
ij uij − λ

(r+1)
ij lij + lij)x̃ij −

∑

i,j

λ
(r+1)
ij uij

=
∑

i,j

(
∑

k,l

x̃klakiblj + x̃ijuij − x̃ijlij + lij)x̃ij −
∑

i,j

x̃ijuij

=
∑

i,j

∑

k,l

akiblj x̃klx̃ij .

Therefore (5.13) holds as equality and X̃ must be the optimal solution of QAP. ¥
From the above proposition, an optimal solution of QAP will be obtained in a finite number

of steps.
Note that if we set lij = 0 for all i, j = 1, 2, ..., n, then XY L1(A,B) is just the same as

KBL(A,B). Thus it is easy to see the inner objective function of (5.8) or the right-hand side
of (5.10) satisfies

∑

i,j

c
(t)
ij xij − α(t)

=
∑

i,j

(
∑

k,l

λ
(t)
kl akiblj + λ

(t)
ij uij)xij −

∑

i,j

λ
(t)
ij uij +

∑

i,j

lij(1− λ
(t)
ij )xij

≥
∑

i,j

(
∑

k,l

λ
(t)
kl akiblj + λ

(t)
ij uij)xij −

∑

i,j

λ
(t)
ij uij , (5.14)
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which is the corresponding part in the case of KBL(A, B). And (5.14) becomes an equality if
and only if λ

(t)
ij = xij for all i, j = 1, 2, ..., n under the assumption lij > 0. Finally we have the

following result.

Theorem 5.2. Assume lij > 0 for all i, j = 1, 2, ..., n. The master program MP (r) based
on XY L1(A,B) gives a lower bound strictly better than the corresponding MP (r) based on
KBL(A,B) until the algorithm stops.

Proof If the algorithm has not stopped at step r, the optimal solution X̃ must be different from
λ(t) for any 1 ≤ t ≤ r. From the above analysis, we know (5.14) is a strict inequality for any
1 ≤ t ≤ r. Note that MP (r) based on KBL(A,B) is just the case lij = 0 of MP (r) based on
XY L1(A,B). Therefore the objective function value of MP (r) based on XY L1(A,B) is strictly
larger than that based on KBL(A,B). ¥

However, solving the master problem MP (r) optimally is in general as difficult as solving
QAP.

To our interest, we can exactly solve QAP in this cutting plane framework by getting a little
weaker lower bound from solving the continuous relaxation of MP (r) based on XY L1(A,B),
which is a linear program. This cannot be done in the framework based on KBL(A,B), because
the corresponding bound is too weak as shown in Table 1.

Instead of solving MP (r) exactly, we can also try to find a suboptimal solution for MP (r) at
which the objective function value is strictly less than that of the current best solution of the
QAP [9]. As in [7], which is an improvement of [5, 9], the following heuristic is proposed to find
such a suboptimal solution. First solve LAP

λ(r) := arg min
(λij)∈Πn

∑

ij

∑

i,j

c
(r)
ij λij . (5.15)

Define

β(r) := max (1, |
∑

i,j

c
(r)
ij λ

(r)
ij − α(r)|), (5.16)

and a new direction h of search with elements

h
(r)
ij := h

(r−1)
ij +

1
β(r)

c
(r)
ij , i, j = 1, 2, ..., n, (5.17)

with the initial value h0
ij := 0, i, j = 1, 2, ..., n. Then the following LAP, which is an approxima-

tion for MP (r) is solved

min
(xij)n×n∈Πn

∑

ij

h
(r)
ij xij . (5.18)

This solution can still be improved with respect to the objective function value of the given
QAP by applying pair and triple exchange algorithms. More formally we propose the following
algorithm:

Algorithm 5.1.
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Step 1 Initialize t := 1, h0
ij := 0, i, j = 1, 2, ..., n. Input an integer MITER > 0.

Compute uij and lij (i, j = 1, 2, ..., n) by sorting A and B and applying Theorem
2.2. Start with feasible (x(1)

ij ) ∈ Πn and the corresponding objective function
value z∗ of the QAP.

Step 2 Compute (5.6) and (5.7) for i, j = 1, 2, ..., n.

Step 3 Solve (5.15) and compute (5.16) and (5.17).

Step 4 Solve (5.18). Let xt+1 be the solution of this problem and zt+1 the corresponding
objective function value of the QAP.

Step 5 If zt+1 < z∗, put z∗ := zt+1

Step 6 If t < MITER, replace t by t+1 and go to 2; else stop. z∗ is the best objective
function value found during the procedure.

Steps 1-5 of the algorithm are iterated by a fixed number (MITER) of times. Similarly to [7],
we repeat the algorithm by starting from randomly generated feasible solutions. The number of
restarts is denoted by ‘REP’.

The above procedure is also suitable for XY L2(A,B) and it seems better to use XY L2(A,B)
instead of XY L1(A,B) from analogous analysis in the previous section. Furthermore in many
cases where aii = bii = 0 for all i = 1, 2, ..., n, the difference between XY L2(A, B) and
XY L1(A,B) is just in the difference of the values of lij and uij . As showed in [7], different
uij does not have great influence on the performance of the algorithm. Thus we are only inter-
ested in the above algorithm based on XY L2(A,B), denoted by HXYL. We denote the algorithm
[7] based on KBL(A,B) by HKBL. The only difference is in the additional storage for l̃ij in
HXYL because the computational complexity is almost the same among (2.10), (2.13), (3.4),
(3.10) and (3.11). Note that HKBL uses (2.10) while HXYL uses (3.10) and (3.11). As in [7]
we set the parameters MITER= 15 and REP= 3n.

Table 2. Comparison between HKBL and HXYL
HKBL HXYL

Prob. A(%) B(%) C(%) CPU(s) A(%) B(%) C(%) CPU(s)
lipa20a 0.07 0.71 0 1.88 0 0 0 1.94
nug30 0.39 0.69 0.001 10.43 0.16 0.42 0 9.86
kra30b 0.30 0.62 0 9.97 0.21 0.40 0 9.74
tho40 0.54 0.93 0.27 35.86 0.38 0.70 0.11 33.99
sko42 0.49 0.66 0.18 44.10 0.29 0.43 0.09 41.57
sko49 0.53 0.84 0.37 88.70 0.35 0.50 0.12 78.97
wil50 0.22 0.29 0.18 97.59 0.13 0.16 0.09 93.99
esc64a 0 0 0 156.81 0 0 0 147.66
sko81 0.51 0.65 0.42 782.81 0.32 0.41 0.24 708.81

We tested several examples from QAPLIB [10]. As in [7], each example has been tested by
a series of 10 independent runs. Numerical results are reported in Table 2, where column A
gives the average deviation, column B shows the worst deviation, and column C gives the best
reached deviation of the 10 tests. The given average running CPU time in seconds is obtained

13



using a CPU P4 with 2.4GHz. Table 2 shows that HXYL could usually find better solutions
than HKBL in less CPU time. Especially for problem nug30, HXYL finds the optimal solution
while HKBL cannot.

6 Conclusions and further work

In this paper, we have given new linearizations (XY L1, XY L2), which have the same size as
KBL and are more efficient in terms of the tightness of the continuous relaxation. Furthermore,
the continuous relaxation of XY L2 can be regarded as an improvement of the Gilmore-Lawler
bound (GLB). It is the next work to answer whether we could get better result by combining
this new bound with the branch-and-bound method. We also give a corresponding cutting plane
heuristic method as in [7] and show its superiority. This heuristic could be further improved
in two directions, combining with Tabu search or providing initial values for other heuristic
methods such as simulated annealing.
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