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Abstract

In this paper, disturbed sparse linear equations over the 0-1 finite field are considered.
Due to the special structure of the problem, the standard alternating coordinate method
can be implemented in such a way to yield a fast and efficient algorithm. Our alternating
coordinate algorithm makes use of the sparsity of the coefficient matrix and the current
residuals of the equations. Some hybrid techniques such as random restarts and genetic
crossovers are also applied to improve our algorithm.
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1. Introduction

In this paper, we study the problem of solving large sparse linear equations over GF (2), the
field with two elements. Let F = {0, 1}, the problem can be written as

a11x1 ⊕ a12x2 ⊕ . . .⊕ a1nxn = b1,

a21x1 ⊕ a22x2 ⊕ . . .⊕ a2nxn = b2, (1.1)
...

...
...

am1x1 ⊕ am2x2 ⊕ . . .⊕ amnxn = bm,

where ⊕ is the “exclusive or” operator over the 0-1 field, namely

0⊕ 0 = 0, 0⊕ 1 = 1, 1⊕ 0 = 1, 1⊕ 1 = 0, (1.2)

and where A = (aij) ∈ Fm×n is a given sparse matrix, b = (bi) ∈ Fm is a given vector and
x = (xi) ∈ Fn is the variable that we need to calculate, with m and n being two positive
integers. Such a problem have many applications, including classification problems [14] and
integer factorization problems [5, 6].

However, solving large sparse linear systems over finite fields is not easy. The most common
approach to this problem is to generalize or modify the standard numerical methods for linear
equations defined in <n, such as structured Gaussian elimination, conjugate gradient, and block
Lanczos algorithm (see [13, 5]). Another famous approach is due to Wiedemann, whose method
uses “coordinate recurrence” and the minimum polynomial of the sub-matrices of the coefficient
matrix A(see [17, 6]).

∗ Received March 1, 2006.
1) This work is partially supported by Chinese NSF grant 10231060 and the CAS Knowledge Innovation

Program.



2 Y.X. YUAN AND Z.Z. ZHENG

For simplicity, we denote problem (1.1) by
n⊕

j=1

aijxj = bi, i = 1, ...,m . (1.3)

It is quite usual for many application problems to have m >> n in which case the equations
(1.3) have no solution. Therefore, it is natural for us to consider the least squares problem:

min
x∈F n

m∑

i=1




n⊕

j=1

aijxj − bi




2

. (1.4)

If the operator
⊕

is replaced by
∑

in the above problem and if some simple linear constraints
are added, (1.4) turns into the standard quadratic assignment problem, which has been widely
studied (see [3, 4, 15, 1, 18]). The amazing success of semi-definite programming relaxations
to quadratic assignment problems(for example, see[20, 2]) naturally suggests us to explore the
possibilities of applying relaxations to problem (1.4). Indeed, we tried interior-point gradient
methods with diagonal-scalings [19] and trust-region interior-point algorithms [7] to solve the
relaxation problem to (1.4). But unfortunately, our numerical experiments show that it is
difficult and time-consuming for interior point methods to find good solutions of this particular
problem.

Therefore, we investigated other possible approaches to solve this difficult problem. Com-
ing into our minds was one very simple technique: the alternating coordinate direction search
method. The alternating direction search method is one of the direct methods for nonlinear
optimization problems. It tries to find a minimum of a nonlinear function defined in the n
dimensional space by searching along n coordinate directions in turns. The classical alternating
directions methods include the pattern search method by Hooke and Jeeves [12] and Rosen-
brock’s method [16]. Considering the binary and sparse properties of the problem, we noticed
that the basic idea of alternating directions could be implemented here very efficiently. At a
typical step when we search along a coordinate direction j, all we need to do is just to compare
the objective function values at two points, which can be easily done by counting the non-zero
elements of the current residual vector from those indices i such that aij are non-zero.

The numerical results for the alternating coordinate search method are very encouraging,
particularly for the zero residual problems, namely problems that have an exact solution. Ac-
tually our simple algorithm also works very well for disturbed problems when the sparsity is
over 97 %. The disturbed systems are generated by randomly changing b, where b is the right
hand side vector of a zero-residual problem. In order to improve our algorithm, we also consider
random restarts and genetic hybrid techniques.

This paper is organized as follows. In the following section we present an alternating direc-
tion algorithm for sparse linear equations over finite field of two elements. Numerical results
of our algorithm are given in Section 3. In Section 4 we discuss random and genetic hybrids
improvement techniques and give some more computational results. Finally, some concluding
remarks are given in Section 5.

2. The Alternating Direction Algorithm

Define the residual vector r(x) ∈ Fm by

ri(x) = |
n⊕

j=1

aijxj − bi| (i = 1, ..., m). (2.1)

Due to the fact that ri is either 0 or 1, we can easily see that problem (1.4) is equivalent to

min
x∈F n

‖r(x)‖1. (2.2)
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In a typical iteration, we have a current iteration point x, and we need to search along a
coordinate direction, say the j−th coordinate direction ej . All we need to do is to compare the
function value ‖r‖1 at the current point x and another point x̄ which is defined by

x̄i = xi, (i 6= j), x̄j = xj ⊕ 1. (2.3)

Therefore, it is easy to see that r(x̄) = r(x)⊕ aj , where aj is the j − th column of A. For each
j = 1, 2, ...n, we define Ij ⊂ {1, 2, ...,m} to be the subset of the indices of all i such that aij 6= 0.
Thus we only need to consider the elements of r(x) for those indices belong to Ij . If we move
the iterate point from x to x̄, the residual vector r̄ is given by changing the elements of r(x)
for the indices in Ij . Thus, we see that the objective function ‖r‖1 will be reduced if and only
if the nonzero elements of r(x)(with the indices belonging to Ij) are more than a half. This
enables us to implement a very simple alternating direction search algorithm, which is given as
follows.

Algorithm 2.1. (An alternating coordinate search algorithm)

Step 1 Given A ∈ Fm×n, b ∈ Fm. For j = 1, 2, ...n, let Ij ⊂ {1, 2, ..., m} be the subset of all i
such that aij 6= 0. Randomly generate an initial point x ∈ Fn. Calculate r = r(x).

Step 2 xbest = x, j := 1

Step 3 For all i ∈ Ij count the number of non-zero elements of r(x), denoted by COUNT .
If COUNT > |Ij |/2 then do { xj = xj ⊕ 1 and ri = ri ⊕ 1(i ∈ Ij) }.

Step 4 If j < n then j := j + 1 and go to Step 3.

Step 5 If x = xbest then accept xbest as an approximate solution, otherwise go to Step 2.

We notice that because the coefficient matrix A is very sparse and its nonzero elements
have been stored in advance, checking r in the step 3 does not cost much computational time.
In addition, the new residual vector r can be obtained by modifying very few components. In
the algorithm, we only need to compute the whole residual vector once(when we initiate the
algorithm), which saves a lot of computational time.

The stopping condition in Algorithm 2.1 does not guarantee a global minimizer of problem
(2.2). In fact it will terminate at a point where no improvement on the objective function can
be achieved by searching along any coordinate direction.

3. Numerical Results

The problems we tested for our algorithm and its modifications are all generated randomly.
Given two positive numbers m and n, we first generate the elements of A ∈ Fm×n randomly
with a certain sparsity. For example a sparsity of 10% indicates that only 10 percent of the
elements of A are ones. The exact solution x∗ ∈ Fn of the problem are also generated randomly.
Once we have A and x∗, the right hand side vector b is defined by bi = ⊕n

j=1aij(x∗)j(i = 1, ...m).
Then, we apply Algorithm 2.1 to recover the exact solution x∗. For some problems, we disturb
the right hand side vector b with different disturbance ratios. For example, a vector b disturbed
with a disturbance ratio 30% means that a randomly selected 30 percent of the elements in b
are changed either from 0 to 1 or from 1 to 0. In all the problems we choose m = 400000 and
n = 128.

The programs were coded in Microsoft Visual C++ 6.0 and ran on a 2.4GHz desktop
Pentium IV computer. The numerical results for the undisturbed problems are reported in
Table 1. The degree of sparsity is chosen as 99%, 98%, 97%, 96%, 95% respectively. For each
case we ran ten times and reported the average results, which are given in Table 1. The first
column is the sparsity of the problem, the second column is the 1-norm of the final residual at
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the computed point xbest, the third column is the 1-norm distance between the computed point
and the exact solution, and the final column is the cpu time in seconds. From these results,
we can easily conclude that the alternating coordinate search method works very efficient for
undisturbed equations.

sparsity ‖r(xbest)‖1 ‖x∗ − xbest‖1 T
99% 0 0 5
98% 0 0 5
97% 0 0 6
96% 0 0 6
95% 0 0 7

Table 1. Algorithm 2.1 for undisturbed problems

In many applications, the right hand side is disturbed. Therefore, we also tested our algo-
rithm for the disturbed cases. The disturbance ratio, as defined above, is set to be 10%, 20%,
30%, 40%, and 45% respectively. The results for the disturbed cases are reported in Table 2.
Even though Table 2 looks very similar to Table 1, there are 5 differences. The first one is that
in Table 2 the problems are disturbed with difference disturbance ratios from 10% to 45%. The
second difference is that in Table 2 the results for the sparsity of 98% and 97% are not listed as
they are the same as those for 99%. The third difference is that in Table 1 we give the average
of 10 runs, while in Table 2 we give two separate runs for each case. The forth difference is
that in Table 2 we do not list the CPU time as every run (for difference case) the cpu time is
about the same (about 5 to 6 seconds). The final difference is that in Table 2 we also give the
degree of dominance of the final point xbest, which is defined by

dominance(xbest) =
‖r(xbest)‖

m
× 100%, (3.1)

where r is defined in (2.1). Because disturbed systems are often over-determined systems
without zero residual solution, it is usual that the dominance will not be zero. For example,
for the disturbed test problems that we generated, the number dominance at x∗ is just the
disturbance ratio. Thus, for our computed solution xbest, we should be happy with it if its
dominance is not greater than disturbance ratio.

RUN ONE RUN TWO
sparsity disturb. ‖r‖1 ‖x∗ − xbest‖1 domin. ‖r‖1 ‖x∗ − xbest‖1 domin.

10% 40000 0 10 40000 0 10
20% 80000 0 20 80000 0 20

99% 30% 120000 0 30 120000 0 30
40% 160000 0 40 160000 0 40
45% 180000 0 45 180000 0 45
10% 40000 0 10 40000 0 10
20% 80000 0 20 80000 0 20

96% 30% 120000 0 30 120000 0 30
40% 196782 51 49.20 197380 71 49.35
45% 196875 68 49.22 197293 76 49.32
10% 40000 0 10 40000 0 10
20% 80000 0 20 80000 0 20

95% 30% 196505 52 49.13 197668 51 49.42
40% 196956 56 49.24 196765 41 49.19
45% 196979 57 49.24 197679 70 49.42

Table 2. Algorithm 2.1 for disturbed problems
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From the results in Table 2 we notice that none of the computed points xbest is better than
x∗(the solution of the undisturbed equations). One reasonable guess is that x∗ is very likely
the global minimizer of (2.2). When the sparsity is 96% and 95% and when the disturbance
ratio surpasses 30%, the points computed by our algorithm is much worse than x∗. Therefore,
in order to obtain an efficient and practical method for solving problem (2.2), we should modify
our algorithm. In the next section we give two straightforward approaches, one is random
restarts and the other is genetic crossover.

4. Random Restarts and Genetic hybrids

Now, we combine Algorithm 2.1 with the random restart technique. Whenever Algorithm 2.1
terminates at a local minimizer, we restart the algorithm with a randomly chosen new starting
point. Of course, such an approach would need a stopping technique, which is not obvious,
because it is well known that termination criterion for global optimization is very hard to
given. However, here we are more interested in exploring the efficiency of random restarts.
Thus we terminate the algorithm whenever the degree of dominance is not higher than the
disturbance ratio of the problem.

Algorithm 4.1. (An alternating coordinate search algorithm with random restarts)

Step 1 Given A ∈ Fm×n, b ∈ Fm. Given the disturbance ratio τ . Let vopt = +∞.

Step 2 Restart Algorithm 2.1 to obtain a new xbest.
If ‖r(xbest)‖1 ≥ vopt go to Step 2.

Step 3 xopt := xbest; vopt = ‖r(xbest)‖1.
If ‖r(xopt)‖1 > τm go to Step 2.
Return xopt as an approximate solution and Stop.

In practice, this is not feasible unless we know the disturbance ratio of the problem to
be solved. One possible way is to stop the overall procedure if no better local minimizer is
found after quite a few restarts (see[11]). In table 3 we present the computational results of
Algorithm 4.1, where ropt = r(xopt) and εopt = ‖x∗ − xopt‖1. It is easy to see that random
restarts do help to improve our algorithm because the prescribed “exact solution” x∗ is found
by Algorithm 4.1 for all the five cases that x∗ was not found by Algorithm 2.1. However, for low
sparsity and high disturbance ratio problems, many restarts may be needed in order to reach
the required degree of dominance. For example, in the second run for the case with sparsity 95%
and disturbance ratio 45%, it takes more than one hour for Algorithm 4.1 to find an acceptable
approximate solution.

RUN ONE RUN TWO
sparsity disturb. ‖ropt‖1 εopt domin. T ‖ropt‖1 εopt domin. T

10% 40000 0 10 6 40000 0 10 6
20% 80000 0 20 6 80000 0 20 5

96% 30% 120000 0 30 5 120000 0 30 6
40% 160000 0 40 6 160000 0 40 6
45% 180000 0 45 17 180000 0 45 7
10% 40000 0 10 6 40000 0 10 5
20% 80000 0 20 5 80000 0 20 6

95% 30% 120000 0 30 14 120000 0 30 7
40% 160000 0 40 114 160000 0 40 116
45% 180000 0 45 392 180000 0 45 64.5m

Table 3. Algorithm 4.1 for disturbed problems
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Next, considering the discrete property of this problem, we solve it by a heuristic algorithm,
the genetic hybrids algorithm. It is a steady population evolutionary process(see [10]) which
was successfully applied to the quadratic assignment problem(see [9, 8]). Here we specifically
apply Algorithm 2.1 as the local search because it is fast and efficient.

Algorithm 4.2. (A genetic hybrids algorithm)

Step 1 Given A ∈ Fm×n, b ∈ Fm. Given the disturbance ratio τ . Let vopt = +∞.

Step 2 Generate the initial population randomly.
Carry out local search and evaluate the population.

Step 3 Do the Roulette Wheel selection operation, one-point crossover operation and local search.

Step 4 Evaluate the population, find the best and worst individuals: xbest and xworst.
If ‖r(xbest)‖1 ≤ vopt then xopt := xbest; vopt = ‖r(xbest)‖1.
Else replace xworst by xbest.

Step 5 If ‖r(xopt)‖1 ≤ τm, return xopt as an approximate solution and stop.

Step 6 If the number of xbest is not more than 80% in the current population go to Step 3.
Do the simple bit mutation for each individual except for one xbest, evaluate the population
and go to Step 3.

In the above algorithm, “evaluate the population” includes calculating the objective function
value and the fitness of each individual. In practice, we can stop the overall procedure if no
better individual is found after quite a few iterations or if the number of iterations reaches a
prescribed maximum number(see [9, 8]). Some parameters are as follows: population size: 10,
crossover probability: 0.8, mutation probability: 0.6. In Table 4, we present the computational
results of Algorithm 4.2. It can be easily seen that the genetic hybrids algorithm managed to
find the prescribed “exact solution” x∗ for all cases. It is also interesting to observe that the
genetic hybrids algorithm needs less computing time than the random restart method for the
hard cases such as sparsity 95% with disturbance ratio 45%.

RUN ONE RUN TWO
sparsity disturb. ‖ropt‖1 εopt domin. T ‖ropt‖1 εopt domin. T

10% 40000 0 10 9 40000 0 10 9
20% 80000 0 20 10 80000 0 20 9

96% 30% 120000 0 30 10 120000 0 30 10
40% 160000 0 40 12 160000 0 40 12
45% 180000 0 45 41 180000 0 45 16
10% 40000 0 10 11 40000 0 10 11
20% 80000 0 20 11 80000 0 20 11

95% 30% 120000 0 30 11 120000 0 30 11
40% 160000 0 40 12 160000 0 40 40
45% 180000 0 45 29 180000 0 45 45

Table 4. Algorithm 4.2 for disturbed problems

However, if we lower the sparsity of the problem further, our generic hybrids algorithm also
takes much time to find x∗. Some further results are given as follows in Table 5. This indicates
that when sparsity is lower than 94% the problem is really very hard to solve.
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sparsity disturb. ‖ropt‖1 εopt domin. T
10% 40000 0 10 17
20% 80000 0 20 32

94% 30% 120000 0 30 44
40% 160000 0 40 262
10% 40000 0 10 113

93% 20% 80000 0 20 17.36m
30% 120000 0 30 43.62m

92% 10% 40000 0 10 471.48m
20% 80000 0 20 123.73m

Table 5. Algorithm 4.2 for low sparsity disturbed problems

5. Discussions

In this paper we presented an alternating directions method for solving sparse 0-1 linear
equations over the 0-1 finite field. Numerical tests on randomly generated problems indicate
that our algorithm works very well for undisturbed systems. For disturbed systems, we proposed
two ways of modifications. One approach is repeatedly restarting the algorithm randomly, and
the other is applying genetic hybrids techniques. Both modifications were tested and we found
they do provide improvement over the original algorithm. However, for low sparsity problems
with high disturbance ratios, even our modified algorithms are not fast enough. Therefore it
worths to investigate more efficient algorithms.

Another point should be addressed is that our unsuccessful attempts on relaxation does
not at all rule out the possibility of the existence of fast and efficient relaxation method for
sparse linear equations over the 0-1 field. The crucial part of a relaxation method is how
to extend the objective function ‖r(x)‖1 (or ‖r(x)‖2 ) from Fn to the n−dimensional box
B = {0 ≤ xi ≤ 1, i = 1, ..., n}. What we have tried are the two straightforward ways. One is to
replace x ⊕ y by (x + y)/2 − xy. Applying this recursively, we can change (1.3) into a system
of polynomial equations. Another is to consider the relaxed problem:

min
x∈B

m∑

i=1


cos(π[

n∑

j=1

Aijxj − bi])− 1




2

, (5.1)

or

min
x∈B

m∑

i=1

| cos(π[
n∑

j=1

Aijxj − bi])− 1|. (5.2)

Neither minimizing cosine functions nor solving high order polynomial equations is an easy
task. This can partially explain why our attempts in using relaxations did not work out well.
We believe that a clever definition of r(x) in on the box B = {0 ≤ xi ≤ 1, i = 1, .., n} would
lead to an efficient relaxation method.
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